Metamath Proof Explorer


Theorem brttrcl2

Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024)

Ref Expression
Assertion brttrcl2 Could not format assertion : No typesetting found for |- ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 brttrcl Could not format ( A t++ R B <-> E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( A t++ R B <-> E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) with typecode |-
2 df-1o 1𝑜=suc
3 2 difeq2i ω1𝑜=ωsuc
4 3 eleq2i mω1𝑜mωsuc
5 peano1 ω
6 eldifsucnn ωmωsucnωm=sucn
7 5 6 ax-mp mωsucnωm=sucn
8 dif0 ω=ω
9 8 rexeqi nωm=sucnnωm=sucn
10 4 7 9 3bitri mω1𝑜nωm=sucn
11 10 anbi1i mω1𝑜ffFnsucmf=Afm=BamfaRfsucanωm=sucnffFnsucmf=Afm=BamfaRfsuca
12 r19.41v nωm=sucnffFnsucmf=Afm=BamfaRfsucanωm=sucnffFnsucmf=Afm=BamfaRfsuca
13 11 12 bitr4i mω1𝑜ffFnsucmf=Afm=BamfaRfsucanωm=sucnffFnsucmf=Afm=BamfaRfsuca
14 13 exbii mmω1𝑜ffFnsucmf=Afm=BamfaRfsucamnωm=sucnffFnsucmf=Afm=BamfaRfsuca
15 df-rex mω1𝑜ffFnsucmf=Afm=BamfaRfsucammω1𝑜ffFnsucmf=Afm=BamfaRfsuca
16 rexcom4 nωmm=sucnffFnsucmf=Afm=BamfaRfsucamnωm=sucnffFnsucmf=Afm=BamfaRfsuca
17 14 15 16 3bitr4i mω1𝑜ffFnsucmf=Afm=BamfaRfsucanωmm=sucnffFnsucmf=Afm=BamfaRfsuca
18 vex nV
19 18 sucex sucnV
20 suceq m=sucnsucm=sucsucn
21 20 fneq2d m=sucnfFnsucmfFnsucsucn
22 fveqeq2 m=sucnfm=Bfsucn=B
23 22 anbi2d m=sucnf=Afm=Bf=Afsucn=B
24 raleq m=sucnamfaRfsucaasucnfaRfsuca
25 21 23 24 3anbi123d m=sucnfFnsucmf=Afm=BamfaRfsucafFnsucsucnf=Afsucn=BasucnfaRfsuca
26 25 exbidv m=sucnffFnsucmf=Afm=BamfaRfsucaffFnsucsucnf=Afsucn=BasucnfaRfsuca
27 19 26 ceqsexv mm=sucnffFnsucmf=Afm=BamfaRfsucaffFnsucsucnf=Afsucn=BasucnfaRfsuca
28 27 rexbii nωmm=sucnffFnsucmf=Afm=BamfaRfsucanωffFnsucsucnf=Afsucn=BasucnfaRfsuca
29 1 17 28 3bitri Could not format ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-