Description: Condition for membership in the difference of _om and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | eldifsucnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 | |
|
2 | nnawordex | |
|
3 | 1 2 | sylan | |
4 | nnacl | |
|
5 | nnaword1 | |
|
6 | nnasuc | |
|
7 | 6 | ancoms | |
8 | nnacom | |
|
9 | 1 8 | sylan | |
10 | nnacom | |
|
11 | suceq | |
|
12 | 10 11 | syl | |
13 | 7 9 12 | 3eqtr4d | |
14 | sseq2 | |
|
15 | suceq | |
|
16 | 15 | eqeq2d | |
17 | 14 16 | anbi12d | |
18 | 17 | rspcev | |
19 | 4 5 13 18 | syl12anc | |
20 | eqeq1 | |
|
21 | 20 | anbi2d | |
22 | 21 | rexbidv | |
23 | 19 22 | syl5ibcom | |
24 | 23 | rexlimdva | |
25 | 24 | adantr | |
26 | 3 25 | sylbid | |
27 | 26 | expimpd | |
28 | peano2 | |
|
29 | 28 | ad2antlr | |
30 | nnord | |
|
31 | nnord | |
|
32 | ordsucsssuc | |
|
33 | 30 31 32 | syl2an | |
34 | 33 | biimpa | |
35 | 29 34 | jca | |
36 | eleq1 | |
|
37 | sseq2 | |
|
38 | 36 37 | anbi12d | |
39 | 35 38 | syl5ibrcom | |
40 | 39 | expimpd | |
41 | 40 | rexlimdva | |
42 | 27 41 | impbid | |
43 | eldif | |
|
44 | nnord | |
|
45 | 1 44 | syl | |
46 | nnord | |
|
47 | ordtri1 | |
|
48 | 45 46 47 | syl2an | |
49 | 48 | pm5.32da | |
50 | 43 49 | bitr4id | |
51 | eldif | |
|
52 | 51 | anbi1i | |
53 | anass | |
|
54 | 52 53 | bitri | |
55 | 54 | rexbii2 | |
56 | ordtri1 | |
|
57 | 30 31 56 | syl2an | |
58 | 57 | anbi1d | |
59 | 58 | rexbidva | |
60 | 55 59 | bitr4id | |
61 | 42 50 60 | 3bitr4d | |