Metamath Proof Explorer


Theorem eldifsucnn

Description: Condition for membership in the difference of _om and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024)

Ref Expression
Assertion eldifsucnn AωBωsucAxωAB=sucx

Proof

Step Hyp Ref Expression
1 peano2 AωsucAω
2 nnawordex sucAωBωsucAByωsucA+𝑜y=B
3 1 2 sylan AωBωsucAByωsucA+𝑜y=B
4 nnacl AωyωA+𝑜yω
5 nnaword1 AωyωAA+𝑜y
6 nnasuc yωAωy+𝑜sucA=sucy+𝑜A
7 6 ancoms Aωyωy+𝑜sucA=sucy+𝑜A
8 nnacom sucAωyωsucA+𝑜y=y+𝑜sucA
9 1 8 sylan AωyωsucA+𝑜y=y+𝑜sucA
10 nnacom AωyωA+𝑜y=y+𝑜A
11 suceq A+𝑜y=y+𝑜AsucA+𝑜y=sucy+𝑜A
12 10 11 syl AωyωsucA+𝑜y=sucy+𝑜A
13 7 9 12 3eqtr4d AωyωsucA+𝑜y=sucA+𝑜y
14 sseq2 x=A+𝑜yAxAA+𝑜y
15 suceq x=A+𝑜ysucx=sucA+𝑜y
16 15 eqeq2d x=A+𝑜ysucA+𝑜y=sucxsucA+𝑜y=sucA+𝑜y
17 14 16 anbi12d x=A+𝑜yAxsucA+𝑜y=sucxAA+𝑜ysucA+𝑜y=sucA+𝑜y
18 17 rspcev A+𝑜yωAA+𝑜ysucA+𝑜y=sucA+𝑜yxωAxsucA+𝑜y=sucx
19 4 5 13 18 syl12anc AωyωxωAxsucA+𝑜y=sucx
20 eqeq1 sucA+𝑜y=BsucA+𝑜y=sucxB=sucx
21 20 anbi2d sucA+𝑜y=BAxsucA+𝑜y=sucxAxB=sucx
22 21 rexbidv sucA+𝑜y=BxωAxsucA+𝑜y=sucxxωAxB=sucx
23 19 22 syl5ibcom AωyωsucA+𝑜y=BxωAxB=sucx
24 23 rexlimdva AωyωsucA+𝑜y=BxωAxB=sucx
25 24 adantr AωBωyωsucA+𝑜y=BxωAxB=sucx
26 3 25 sylbid AωBωsucABxωAxB=sucx
27 26 expimpd AωBωsucABxωAxB=sucx
28 peano2 xωsucxω
29 28 ad2antlr AωxωAxsucxω
30 nnord AωOrdA
31 nnord xωOrdx
32 ordsucsssuc OrdAOrdxAxsucAsucx
33 30 31 32 syl2an AωxωAxsucAsucx
34 33 biimpa AωxωAxsucAsucx
35 29 34 jca AωxωAxsucxωsucAsucx
36 eleq1 B=sucxBωsucxω
37 sseq2 B=sucxsucABsucAsucx
38 36 37 anbi12d B=sucxBωsucABsucxωsucAsucx
39 35 38 syl5ibrcom AωxωAxB=sucxBωsucAB
40 39 expimpd AωxωAxB=sucxBωsucAB
41 40 rexlimdva AωxωAxB=sucxBωsucAB
42 27 41 impbid AωBωsucABxωAxB=sucx
43 eldif BωsucABω¬BsucA
44 nnord sucAωOrdsucA
45 1 44 syl AωOrdsucA
46 nnord BωOrdB
47 ordtri1 OrdsucAOrdBsucAB¬BsucA
48 45 46 47 syl2an AωBωsucAB¬BsucA
49 48 pm5.32da AωBωsucABBω¬BsucA
50 43 49 bitr4id AωBωsucABωsucAB
51 eldif xωAxω¬xA
52 51 anbi1i xωAB=sucxxω¬xAB=sucx
53 anass xω¬xAB=sucxxω¬xAB=sucx
54 52 53 bitri xωAB=sucxxω¬xAB=sucx
55 54 rexbii2 xωAB=sucxxω¬xAB=sucx
56 ordtri1 OrdAOrdxAx¬xA
57 30 31 56 syl2an AωxωAx¬xA
58 57 anbi1d AωxωAxB=sucx¬xAB=sucx
59 58 rexbidva AωxωAxB=sucxxω¬xAB=sucx
60 55 59 bitr4id AωxωAB=sucxxωAxB=sucx
61 42 50 60 3bitr4d AωBωsucAxωAB=sucx