| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
|
| 2 |
|
nnawordex |
|
| 3 |
1 2
|
sylan |
|
| 4 |
|
nnacl |
|
| 5 |
|
nnaword1 |
|
| 6 |
|
nnasuc |
|
| 7 |
6
|
ancoms |
|
| 8 |
|
nnacom |
|
| 9 |
1 8
|
sylan |
|
| 10 |
|
nnacom |
|
| 11 |
|
suceq |
|
| 12 |
10 11
|
syl |
|
| 13 |
7 9 12
|
3eqtr4d |
|
| 14 |
|
sseq2 |
|
| 15 |
|
suceq |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
14 16
|
anbi12d |
|
| 18 |
17
|
rspcev |
|
| 19 |
4 5 13 18
|
syl12anc |
|
| 20 |
|
eqeq1 |
|
| 21 |
20
|
anbi2d |
|
| 22 |
21
|
rexbidv |
|
| 23 |
19 22
|
syl5ibcom |
|
| 24 |
23
|
rexlimdva |
|
| 25 |
24
|
adantr |
|
| 26 |
3 25
|
sylbid |
|
| 27 |
26
|
expimpd |
|
| 28 |
|
peano2 |
|
| 29 |
28
|
ad2antlr |
|
| 30 |
|
nnord |
|
| 31 |
|
nnord |
|
| 32 |
|
ordsucsssuc |
|
| 33 |
30 31 32
|
syl2an |
|
| 34 |
33
|
biimpa |
|
| 35 |
29 34
|
jca |
|
| 36 |
|
eleq1 |
|
| 37 |
|
sseq2 |
|
| 38 |
36 37
|
anbi12d |
|
| 39 |
35 38
|
syl5ibrcom |
|
| 40 |
39
|
expimpd |
|
| 41 |
40
|
rexlimdva |
|
| 42 |
27 41
|
impbid |
|
| 43 |
|
eldif |
|
| 44 |
|
nnord |
|
| 45 |
1 44
|
syl |
|
| 46 |
|
nnord |
|
| 47 |
|
ordtri1 |
|
| 48 |
45 46 47
|
syl2an |
|
| 49 |
48
|
pm5.32da |
|
| 50 |
43 49
|
bitr4id |
|
| 51 |
|
eldif |
|
| 52 |
51
|
anbi1i |
|
| 53 |
|
anass |
|
| 54 |
52 53
|
bitri |
|
| 55 |
54
|
rexbii2 |
|
| 56 |
|
ordtri1 |
|
| 57 |
30 31 56
|
syl2an |
|
| 58 |
57
|
anbi1d |
|
| 59 |
58
|
rexbidva |
|
| 60 |
55 59
|
bitr4id |
|
| 61 |
42 50 60
|
3bitr4d |
|