Step |
Hyp |
Ref |
Expression |
1 |
|
peano2 |
|
2 |
|
nnawordex |
|
3 |
1 2
|
sylan |
|
4 |
|
nnacl |
|
5 |
|
nnaword1 |
|
6 |
|
nnasuc |
|
7 |
6
|
ancoms |
|
8 |
|
nnacom |
|
9 |
1 8
|
sylan |
|
10 |
|
nnacom |
|
11 |
|
suceq |
|
12 |
10 11
|
syl |
|
13 |
7 9 12
|
3eqtr4d |
|
14 |
|
sseq2 |
|
15 |
|
suceq |
|
16 |
15
|
eqeq2d |
|
17 |
14 16
|
anbi12d |
|
18 |
17
|
rspcev |
|
19 |
4 5 13 18
|
syl12anc |
|
20 |
|
eqeq1 |
|
21 |
20
|
anbi2d |
|
22 |
21
|
rexbidv |
|
23 |
19 22
|
syl5ibcom |
|
24 |
23
|
rexlimdva |
|
25 |
24
|
adantr |
|
26 |
3 25
|
sylbid |
|
27 |
26
|
expimpd |
|
28 |
|
peano2 |
|
29 |
28
|
ad2antlr |
|
30 |
|
nnord |
|
31 |
|
nnord |
|
32 |
|
ordsucsssuc |
|
33 |
30 31 32
|
syl2an |
|
34 |
33
|
biimpa |
|
35 |
29 34
|
jca |
|
36 |
|
eleq1 |
|
37 |
|
sseq2 |
|
38 |
36 37
|
anbi12d |
|
39 |
35 38
|
syl5ibrcom |
|
40 |
39
|
expimpd |
|
41 |
40
|
rexlimdva |
|
42 |
27 41
|
impbid |
|
43 |
|
eldif |
|
44 |
|
nnord |
|
45 |
1 44
|
syl |
|
46 |
|
nnord |
|
47 |
|
ordtri1 |
|
48 |
45 46 47
|
syl2an |
|
49 |
48
|
pm5.32da |
|
50 |
43 49
|
bitr4id |
|
51 |
|
eldif |
|
52 |
51
|
anbi1i |
|
53 |
|
anass |
|
54 |
52 53
|
bitri |
|
55 |
54
|
rexbii2 |
|
56 |
|
ordtri1 |
|
57 |
30 31 56
|
syl2an |
|
58 |
57
|
anbi1d |
|
59 |
58
|
rexbidva |
|
60 |
55 59
|
bitr4id |
|
61 |
42 50 60
|
3bitr4d |
|