Step |
Hyp |
Ref |
Expression |
1 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
2 |
|
nnawordex |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 ) ) |
4 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) ∈ ω ) |
5 |
|
nnaword1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ) |
6 |
|
nnasuc |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
8 |
|
nnacom |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
9 |
1 8
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
10 |
|
nnacom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) ) |
11 |
|
suceq |
⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
13 |
7 9 12
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
14 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ) ) |
15 |
|
suceq |
⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → suc 𝑥 = suc ( 𝐴 +o 𝑦 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ↔ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑥 = ( 𝐴 +o 𝑦 ) → ( ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ( 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ∧ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( ( 𝐴 +o 𝑦 ) ∈ ω ∧ ( 𝐴 ⊆ ( 𝐴 +o 𝑦 ) ∧ ( suc 𝐴 +o 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ) |
19 |
4 5 13 18
|
syl12anc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ) |
20 |
|
eqeq1 |
⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ↔ 𝐵 = suc 𝑥 ) ) |
21 |
20
|
anbi2d |
⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ ( suc 𝐴 +o 𝑦 ) = suc 𝑥 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
23 |
19 22
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
24 |
23
|
rexlimdva |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( suc 𝐴 +o 𝑦 ) = 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
26 |
3 25
|
sylbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
27 |
26
|
expimpd |
⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
28 |
|
peano2 |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → suc 𝑥 ∈ ω ) |
30 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
31 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
32 |
|
ordsucsssuc |
⊢ ( ( Ord 𝐴 ∧ Ord 𝑥 ) → ( 𝐴 ⊆ 𝑥 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) |
33 |
30 31 32
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ 𝑥 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) |
34 |
33
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → suc 𝐴 ⊆ suc 𝑥 ) |
35 |
29 34
|
jca |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → ( suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥 ) ) |
36 |
|
eleq1 |
⊢ ( 𝐵 = suc 𝑥 → ( 𝐵 ∈ ω ↔ suc 𝑥 ∈ ω ) ) |
37 |
|
sseq2 |
⊢ ( 𝐵 = suc 𝑥 → ( suc 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝑥 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝐵 = suc 𝑥 → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ( suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥 ) ) ) |
39 |
35 38
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) ∧ 𝐴 ⊆ 𝑥 ) → ( 𝐵 = suc 𝑥 → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
40 |
39
|
expimpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
41 |
40
|
rexlimdva |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) → ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
42 |
27 41
|
impbid |
⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
43 |
|
eldif |
⊢ ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ( 𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴 ) ) |
44 |
|
nnord |
⊢ ( suc 𝐴 ∈ ω → Ord suc 𝐴 ) |
45 |
1 44
|
syl |
⊢ ( 𝐴 ∈ ω → Ord suc 𝐴 ) |
46 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
47 |
|
ordtri1 |
⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
48 |
45 46 47
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
49 |
48
|
pm5.32da |
⊢ ( 𝐴 ∈ ω → ( ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ↔ ( 𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴 ) ) ) |
50 |
43 49
|
bitr4id |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ( 𝐵 ∈ ω ∧ suc 𝐴 ⊆ 𝐵 ) ) ) |
51 |
|
eldif |
⊢ ( 𝑥 ∈ ( ω ∖ 𝐴 ) ↔ ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
52 |
51
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( ω ∖ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ) |
53 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ω ∧ ¬ 𝑥 ∈ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( 𝑥 ∈ ω ∧ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
54 |
52 53
|
bitri |
⊢ ( ( 𝑥 ∈ ( ω ∖ 𝐴 ) ∧ 𝐵 = suc 𝑥 ) ↔ ( 𝑥 ∈ ω ∧ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
55 |
54
|
rexbii2 |
⊢ ( ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) |
56 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝑥 ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
57 |
30 31 56
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
58 |
57
|
anbi1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
59 |
58
|
rexbidva |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ↔ ∃ 𝑥 ∈ ω ( ¬ 𝑥 ∈ 𝐴 ∧ 𝐵 = suc 𝑥 ) ) ) |
60 |
55 59
|
bitr4id |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω ( 𝐴 ⊆ 𝑥 ∧ 𝐵 = suc 𝑥 ) ) ) |
61 |
42 50 60
|
3bitr4d |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ( ω ∖ suc 𝐴 ) ↔ ∃ 𝑥 ∈ ( ω ∖ 𝐴 ) 𝐵 = suc 𝑥 ) ) |