Metamath Proof Explorer


Theorem brttrcl

Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024)

Ref Expression
Assertion brttrcl Could not format assertion : No typesetting found for |- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 relttrcl Could not format Rel t++ R : No typesetting found for |- Rel t++ R with typecode |-
2 1 brrelex12i Could not format ( A t++ R B -> ( A e. _V /\ B e. _V ) ) : No typesetting found for |- ( A t++ R B -> ( A e. _V /\ B e. _V ) ) with typecode |-
3 fvex fV
4 eleq1 f=AfVAV
5 3 4 mpbii f=AAV
6 fvex fnV
7 eleq1 fn=BfnVBV
8 6 7 mpbii fn=BBV
9 5 8 anim12i f=Afn=BAVBV
10 9 3ad2ant2 fFnsucnf=Afn=BanfaRfsucaAVBV
11 10 exlimiv ffFnsucnf=Afn=BanfaRfsucaAVBV
12 11 rexlimivw nω1𝑜ffFnsucnf=Afn=BanfaRfsucaAVBV
13 eqeq2 x=Af=xf=A
14 13 anbi1d x=Af=xfn=yf=Afn=y
15 14 3anbi2d x=AfFnsucnf=xfn=yanfaRfsucafFnsucnf=Afn=yanfaRfsuca
16 15 exbidv x=AffFnsucnf=xfn=yanfaRfsucaffFnsucnf=Afn=yanfaRfsuca
17 16 rexbidv x=Anω1𝑜ffFnsucnf=xfn=yanfaRfsucanω1𝑜ffFnsucnf=Afn=yanfaRfsuca
18 eqeq2 y=Bfn=yfn=B
19 18 anbi2d y=Bf=Afn=yf=Afn=B
20 19 3anbi2d y=BfFnsucnf=Afn=yanfaRfsucafFnsucnf=Afn=BanfaRfsuca
21 20 exbidv y=BffFnsucnf=Afn=yanfaRfsucaffFnsucnf=Afn=BanfaRfsuca
22 21 rexbidv y=Bnω1𝑜ffFnsucnf=Afn=yanfaRfsucanω1𝑜ffFnsucnf=Afn=BanfaRfsuca
23 df-ttrcl Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
24 17 22 23 brabg Could not format ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) : No typesetting found for |- ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) with typecode |-
25 2 12 24 pm5.21nii Could not format ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-