Metamath Proof Explorer


Theorem brttrcl

Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024)

Ref Expression
Assertion brttrcl Could not format assertion : No typesetting found for |- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 relttrcl Could not format Rel t++ R : No typesetting found for |- Rel t++ R with typecode |-
2 1 brrelex12i Could not format ( A t++ R B -> ( A e. _V /\ B e. _V ) ) : No typesetting found for |- ( A t++ R B -> ( A e. _V /\ B e. _V ) ) with typecode |-
3 fvex f V
4 eleq1 f = A f V A V
5 3 4 mpbii f = A A V
6 fvex f n V
7 eleq1 f n = B f n V B V
8 6 7 mpbii f n = B B V
9 5 8 anim12i f = A f n = B A V B V
10 9 3ad2ant2 f Fn suc n f = A f n = B a n f a R f suc a A V B V
11 10 exlimiv f f Fn suc n f = A f n = B a n f a R f suc a A V B V
12 11 rexlimivw n ω 1 𝑜 f f Fn suc n f = A f n = B a n f a R f suc a A V B V
13 eqeq2 x = A f = x f = A
14 13 anbi1d x = A f = x f n = y f = A f n = y
15 14 3anbi2d x = A f Fn suc n f = x f n = y a n f a R f suc a f Fn suc n f = A f n = y a n f a R f suc a
16 15 exbidv x = A f f Fn suc n f = x f n = y a n f a R f suc a f f Fn suc n f = A f n = y a n f a R f suc a
17 16 rexbidv x = A n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a n ω 1 𝑜 f f Fn suc n f = A f n = y a n f a R f suc a
18 eqeq2 y = B f n = y f n = B
19 18 anbi2d y = B f = A f n = y f = A f n = B
20 19 3anbi2d y = B f Fn suc n f = A f n = y a n f a R f suc a f Fn suc n f = A f n = B a n f a R f suc a
21 20 exbidv y = B f f Fn suc n f = A f n = y a n f a R f suc a f f Fn suc n f = A f n = B a n f a R f suc a
22 21 rexbidv y = B n ω 1 𝑜 f f Fn suc n f = A f n = y a n f a R f suc a n ω 1 𝑜 f f Fn suc n f = A f n = B a n f a R f suc a
23 df-ttrcl Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
24 17 22 23 brabg Could not format ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) : No typesetting found for |- ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) with typecode |-
25 2 12 24 pm5.21nii Could not format ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-