Step |
Hyp |
Ref |
Expression |
1 |
|
relttrcl |
⊢ Rel t++ 𝑅 |
2 |
1
|
brrelex12i |
⊢ ( 𝐴 t++ 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
3 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
4 |
|
eleq1 |
⊢ ( ( 𝑓 ‘ ∅ ) = 𝐴 → ( ( 𝑓 ‘ ∅ ) ∈ V ↔ 𝐴 ∈ V ) ) |
5 |
3 4
|
mpbii |
⊢ ( ( 𝑓 ‘ ∅ ) = 𝐴 → 𝐴 ∈ V ) |
6 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑛 ) ∈ V |
7 |
|
eleq1 |
⊢ ( ( 𝑓 ‘ 𝑛 ) = 𝐵 → ( ( 𝑓 ‘ 𝑛 ) ∈ V ↔ 𝐵 ∈ V ) ) |
8 |
6 7
|
mpbii |
⊢ ( ( 𝑓 ‘ 𝑛 ) = 𝐵 → 𝐵 ∈ V ) |
9 |
5 8
|
anim12i |
⊢ ( ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
12 |
11
|
rexlimivw |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
13 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑓 ‘ ∅ ) = 𝑥 ↔ ( 𝑓 ‘ ∅ ) = 𝐴 ) ) |
14 |
13
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ) ) |
15 |
14
|
3anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
16 |
15
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑓 ‘ 𝑛 ) = 𝑦 ↔ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ) ) |
20 |
19
|
3anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
21 |
20
|
exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
23 |
|
df-ttrcl |
⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
24 |
17 22 23
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
25 |
2 12 24
|
pm5.21nii |
⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |