| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relttrcl |
|- Rel t++ R |
| 2 |
1
|
brrelex12i |
|- ( A t++ R B -> ( A e. _V /\ B e. _V ) ) |
| 3 |
|
fvex |
|- ( f ` (/) ) e. _V |
| 4 |
|
eleq1 |
|- ( ( f ` (/) ) = A -> ( ( f ` (/) ) e. _V <-> A e. _V ) ) |
| 5 |
3 4
|
mpbii |
|- ( ( f ` (/) ) = A -> A e. _V ) |
| 6 |
|
fvex |
|- ( f ` n ) e. _V |
| 7 |
|
eleq1 |
|- ( ( f ` n ) = B -> ( ( f ` n ) e. _V <-> B e. _V ) ) |
| 8 |
6 7
|
mpbii |
|- ( ( f ` n ) = B -> B e. _V ) |
| 9 |
5 8
|
anim12i |
|- ( ( ( f ` (/) ) = A /\ ( f ` n ) = B ) -> ( A e. _V /\ B e. _V ) ) |
| 10 |
9
|
3ad2ant2 |
|- ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
| 11 |
10
|
exlimiv |
|- ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
| 12 |
11
|
rexlimivw |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
| 13 |
|
eqeq2 |
|- ( x = A -> ( ( f ` (/) ) = x <-> ( f ` (/) ) = A ) ) |
| 14 |
13
|
anbi1d |
|- ( x = A -> ( ( ( f ` (/) ) = x /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = y ) ) ) |
| 15 |
14
|
3anbi2d |
|- ( x = A -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 16 |
15
|
exbidv |
|- ( x = A -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 17 |
16
|
rexbidv |
|- ( x = A -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 18 |
|
eqeq2 |
|- ( y = B -> ( ( f ` n ) = y <-> ( f ` n ) = B ) ) |
| 19 |
18
|
anbi2d |
|- ( y = B -> ( ( ( f ` (/) ) = A /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = B ) ) ) |
| 20 |
19
|
3anbi2d |
|- ( y = B -> ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 21 |
20
|
exbidv |
|- ( y = B -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 22 |
21
|
rexbidv |
|- ( y = B -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 23 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 24 |
17 22 23
|
brabg |
|- ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 25 |
2 12 24
|
pm5.21nii |
|- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |