Step |
Hyp |
Ref |
Expression |
1 |
|
relttrcl |
|- Rel t++ R |
2 |
1
|
brrelex12i |
|- ( A t++ R B -> ( A e. _V /\ B e. _V ) ) |
3 |
|
fvex |
|- ( f ` (/) ) e. _V |
4 |
|
eleq1 |
|- ( ( f ` (/) ) = A -> ( ( f ` (/) ) e. _V <-> A e. _V ) ) |
5 |
3 4
|
mpbii |
|- ( ( f ` (/) ) = A -> A e. _V ) |
6 |
|
fvex |
|- ( f ` n ) e. _V |
7 |
|
eleq1 |
|- ( ( f ` n ) = B -> ( ( f ` n ) e. _V <-> B e. _V ) ) |
8 |
6 7
|
mpbii |
|- ( ( f ` n ) = B -> B e. _V ) |
9 |
5 8
|
anim12i |
|- ( ( ( f ` (/) ) = A /\ ( f ` n ) = B ) -> ( A e. _V /\ B e. _V ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
11 |
10
|
exlimiv |
|- ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
12 |
11
|
rexlimivw |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) |
13 |
|
eqeq2 |
|- ( x = A -> ( ( f ` (/) ) = x <-> ( f ` (/) ) = A ) ) |
14 |
13
|
anbi1d |
|- ( x = A -> ( ( ( f ` (/) ) = x /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = y ) ) ) |
15 |
14
|
3anbi2d |
|- ( x = A -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
16 |
15
|
exbidv |
|- ( x = A -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
17 |
16
|
rexbidv |
|- ( x = A -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
18 |
|
eqeq2 |
|- ( y = B -> ( ( f ` n ) = y <-> ( f ` n ) = B ) ) |
19 |
18
|
anbi2d |
|- ( y = B -> ( ( ( f ` (/) ) = A /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = B ) ) ) |
20 |
19
|
3anbi2d |
|- ( y = B -> ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
21 |
20
|
exbidv |
|- ( y = B -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
22 |
21
|
rexbidv |
|- ( y = B -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
23 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
24 |
17 22 23
|
brabg |
|- ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) |
25 |
2 12 24
|
pm5.21nii |
|- ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |