Step |
Hyp |
Ref |
Expression |
1 |
|
brttrcl |
⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
2 |
|
df-1o |
⊢ 1o = suc ∅ |
3 |
2
|
difeq2i |
⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
4 |
3
|
eleq2i |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) ) |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ) |
8 |
|
dif0 |
⊢ ( ω ∖ ∅ ) = ω |
9 |
8
|
rexeqi |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ↔ ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ) |
10 |
4 7 9
|
3bitri |
⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ) |
11 |
10
|
anbi1i |
⊢ ( ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
12 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
13 |
11 12
|
bitr4i |
⊢ ( ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑚 ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑚 ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
16 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
17 |
14 15 16
|
3bitr4i |
⊢ ( ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
18 |
|
vex |
⊢ 𝑛 ∈ V |
19 |
18
|
sucex |
⊢ suc 𝑛 ∈ V |
20 |
|
suceq |
⊢ ( 𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛 ) |
21 |
20
|
fneq2d |
⊢ ( 𝑚 = suc 𝑛 → ( 𝑓 Fn suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
22 |
|
fveqeq2 |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 ‘ 𝑚 ) = 𝐵 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ) ) |
24 |
|
raleq |
⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
25 |
21 23 24
|
3anbi123d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
26 |
25
|
exbidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
27 |
19 26
|
ceqsexv |
⊢ ( ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
28 |
27
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
29 |
1 17 28
|
3bitri |
⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |