Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
|
2 |
|
suceq |
|
3 |
1 2
|
syl |
|
4 |
3
|
fneq2d |
|
5 |
|
df-1o |
|
6 |
1 5
|
eqtr4di |
|
7 |
6
|
fveqeq2d |
|
8 |
7
|
anbi2d |
|
9 |
|
df1o2 |
|
10 |
6 9
|
eqtrdi |
|
11 |
10
|
raleqdv |
|
12 |
|
0ex |
|
13 |
|
fveq2 |
|
14 |
|
suceq |
|
15 |
14 5
|
eqtr4di |
|
16 |
15
|
fveq2d |
|
17 |
13 16
|
breq12d |
|
18 |
12 17
|
ralsn |
|
19 |
11 18
|
bitrdi |
|
20 |
4 8 19
|
3anbi123d |
|
21 |
20
|
exbidv |
|
22 |
21
|
imbi1d |
|
23 |
22
|
albidv |
|
24 |
23
|
imbi2d |
|
25 |
|
suceq |
|
26 |
|
suceq |
|
27 |
25 26
|
syl |
|
28 |
27
|
fneq2d |
|
29 |
25
|
fveqeq2d |
|
30 |
29
|
anbi2d |
|
31 |
25
|
raleqdv |
|
32 |
|
fveq2 |
|
33 |
|
suceq |
|
34 |
33
|
fveq2d |
|
35 |
32 34
|
breq12d |
|
36 |
35
|
cbvralvw |
|
37 |
31 36
|
bitrdi |
|
38 |
28 30 37
|
3anbi123d |
|
39 |
38
|
exbidv |
|
40 |
|
fneq1 |
|
41 |
|
fveq1 |
|
42 |
41
|
eqeq1d |
|
43 |
|
fveq1 |
|
44 |
43
|
eqeq1d |
|
45 |
42 44
|
anbi12d |
|
46 |
|
fveq1 |
|
47 |
|
fveq1 |
|
48 |
46 47
|
breq12d |
|
49 |
48
|
ralbidv |
|
50 |
40 45 49
|
3anbi123d |
|
51 |
50
|
cbvexvw |
|
52 |
39 51
|
bitrdi |
|
53 |
52
|
imbi1d |
|
54 |
53
|
albidv |
|
55 |
|
eqeq2 |
|
56 |
55
|
anbi2d |
|
57 |
56
|
3anbi2d |
|
58 |
57
|
exbidv |
|
59 |
|
breq2 |
|
60 |
58 59
|
imbi12d |
|
61 |
60
|
cbvalvw |
|
62 |
54 61
|
bitrdi |
|
63 |
62
|
imbi2d |
|
64 |
|
suceq |
|
65 |
|
suceq |
|
66 |
64 65
|
syl |
|
67 |
66
|
fneq2d |
|
68 |
64
|
fveqeq2d |
|
69 |
68
|
anbi2d |
|
70 |
64
|
raleqdv |
|
71 |
67 69 70
|
3anbi123d |
|
72 |
71
|
exbidv |
|
73 |
72
|
imbi1d |
|
74 |
73
|
albidv |
|
75 |
74
|
imbi2d |
|
76 |
|
suceq |
|
77 |
|
suceq |
|
78 |
76 77
|
syl |
|
79 |
78
|
fneq2d |
|
80 |
76
|
fveqeq2d |
|
81 |
80
|
anbi2d |
|
82 |
76
|
raleqdv |
|
83 |
79 81 82
|
3anbi123d |
|
84 |
83
|
exbidv |
|
85 |
84
|
imbi1d |
|
86 |
85
|
albidv |
|
87 |
86
|
imbi2d |
|
88 |
|
breq12 |
|
89 |
88
|
biimpa |
|
90 |
89
|
3adant1 |
|
91 |
|
ssbr |
|
92 |
91
|
adantr |
|
93 |
90 92
|
syl5 |
|
94 |
93
|
exlimdv |
|
95 |
94
|
alrimiv |
|
96 |
|
fvex |
|
97 |
|
eqeq2 |
|
98 |
97
|
anbi2d |
|
99 |
98
|
3anbi2d |
|
100 |
99
|
exbidv |
|
101 |
|
breq2 |
|
102 |
100 101
|
imbi12d |
|
103 |
96 102
|
spcv |
|
104 |
|
simpr1 |
|
105 |
|
sssucid |
|
106 |
|
fnssres |
|
107 |
104 105 106
|
sylancl |
|
108 |
|
peano2 |
|
109 |
108
|
ad2antrr |
|
110 |
|
nnord |
|
111 |
109 110
|
syl |
|
112 |
|
0elsuc |
|
113 |
111 112
|
syl |
|
114 |
113
|
fvresd |
|
115 |
|
simpr2l |
|
116 |
114 115
|
eqtrd |
|
117 |
|
vex |
|
118 |
117
|
sucex |
|
119 |
118
|
sucid |
|
120 |
|
fvres |
|
121 |
119 120
|
mp1i |
|
122 |
|
simplr3 |
|
123 |
|
elelsuc |
|
124 |
123
|
adantl |
|
125 |
35 122 124
|
rspcdva |
|
126 |
124
|
fvresd |
|
127 |
|
ordsucelsuc |
|
128 |
111 127
|
syl |
|
129 |
128
|
biimpa |
|
130 |
129
|
fvresd |
|
131 |
125 126 130
|
3brtr4d |
|
132 |
131
|
ralrimiva |
|
133 |
|
vex |
|
134 |
133
|
resex |
|
135 |
|
fneq1 |
|
136 |
|
fveq1 |
|
137 |
136
|
eqeq1d |
|
138 |
|
fveq1 |
|
139 |
138
|
eqeq1d |
|
140 |
137 139
|
anbi12d |
|
141 |
|
fveq1 |
|
142 |
|
fveq1 |
|
143 |
141 142
|
breq12d |
|
144 |
143
|
ralbidv |
|
145 |
135 140 144
|
3anbi123d |
|
146 |
134 145
|
spcev |
|
147 |
107 116 121 132 146
|
syl121anc |
|
148 |
|
simplrl |
|
149 |
|
simpr3 |
|
150 |
|
ssbr |
|
151 |
150
|
ralimdv |
|
152 |
148 149 151
|
sylc |
|
153 |
|
fveq2 |
|
154 |
|
suceq |
|
155 |
154
|
fveq2d |
|
156 |
153 155
|
breq12d |
|
157 |
156
|
rspcv |
|
158 |
119 152 157
|
mpsyl |
|
159 |
|
simpr2r |
|
160 |
158 159
|
breqtrd |
|
161 |
|
breq1 |
|
162 |
101 161
|
anbi12d |
|
163 |
96 162
|
spcev |
|
164 |
|
vex |
|
165 |
|
vex |
|
166 |
164 165
|
brco |
|
167 |
163 166
|
sylibr |
|
168 |
|
simplrr |
|
169 |
168
|
ssbrd |
|
170 |
167 169
|
syl5 |
|
171 |
160 170
|
mpan2d |
|
172 |
147 171
|
embantd |
|
173 |
172
|
ex |
|
174 |
173
|
com23 |
|
175 |
103 174
|
syl5 |
|
176 |
175
|
3impia |
|
177 |
176
|
exlimdv |
|
178 |
177
|
alrimiv |
|
179 |
178
|
3exp |
|
180 |
179
|
a2d |
|
181 |
24 63 75 87 95 180
|
finds |
|
182 |
181
|
com12 |
|
183 |
182
|
ralrimiv |
|
184 |
|
ralcom4 |
|
185 |
|
r19.23v |
|
186 |
185
|
albii |
|
187 |
184 186
|
bitri |
|
188 |
183 187
|
sylib |
|
189 |
|
brttrcl2 |
Could not format ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) with typecode |- |
190 |
|
df-br |
Could not format ( x t++ R y <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( x t++ R y <-> <. x , y >. e. t++ R ) with typecode |- |
191 |
189 190
|
bitr3i |
Could not format ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) with typecode |- |
192 |
|
df-br |
|
193 |
191 192
|
imbi12i |
Could not format ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |- |
194 |
193
|
albii |
Could not format ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |- |
195 |
188 194
|
sylib |
Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |- |
196 |
195
|
alrimiv |
Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |- |
197 |
|
relttrcl |
Could not format Rel t++ R : No typesetting found for |- Rel t++ R with typecode |- |
198 |
|
ssrel |
Could not format ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) : No typesetting found for |- ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) with typecode |- |
199 |
197 198
|
ax-mp |
Could not format ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |- |
200 |
196 199
|
sylibr |
Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) with typecode |- |