Metamath Proof Explorer


Theorem ttrclss

Description: If R is a subclass of S and S is transitive, then the transitive closure of R is a subclass of S . (Contributed by Scott Fenton, 20-Oct-2024)

Ref Expression
Assertion ttrclss Could not format assertion : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) with typecode |-

Proof

Step Hyp Ref Expression
1 suceq m = suc m = suc
2 suceq suc m = suc suc suc m = suc suc
3 1 2 syl m = suc suc m = suc suc
4 3 fneq2d m = f Fn suc suc m f Fn suc suc
5 df-1o 1 𝑜 = suc
6 1 5 eqtr4di m = suc m = 1 𝑜
7 6 fveqeq2d m = f suc m = y f 1 𝑜 = y
8 7 anbi2d m = f = x f suc m = y f = x f 1 𝑜 = y
9 df1o2 1 𝑜 =
10 6 9 eqtrdi m = suc m =
11 10 raleqdv m = a suc m f a R f suc a a f a R f suc a
12 0ex V
13 fveq2 a = f a = f
14 suceq a = suc a = suc
15 14 5 eqtr4di a = suc a = 1 𝑜
16 15 fveq2d a = f suc a = f 1 𝑜
17 13 16 breq12d a = f a R f suc a f R f 1 𝑜
18 12 17 ralsn a f a R f suc a f R f 1 𝑜
19 11 18 bitrdi m = a suc m f a R f suc a f R f 1 𝑜
20 4 8 19 3anbi123d m = f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜
21 20 exbidv m = f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜
22 21 imbi1d m = f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
23 22 albidv m = y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y y f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
24 23 imbi2d m = R S S S S y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y R S S S S y f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
25 suceq m = i suc m = suc i
26 suceq suc m = suc i suc suc m = suc suc i
27 25 26 syl m = i suc suc m = suc suc i
28 27 fneq2d m = i f Fn suc suc m f Fn suc suc i
29 25 fveqeq2d m = i f suc m = y f suc i = y
30 29 anbi2d m = i f = x f suc m = y f = x f suc i = y
31 25 raleqdv m = i a suc m f a R f suc a a suc i f a R f suc a
32 fveq2 a = b f a = f b
33 suceq a = b suc a = suc b
34 33 fveq2d a = b f suc a = f suc b
35 32 34 breq12d a = b f a R f suc a f b R f suc b
36 35 cbvralvw a suc i f a R f suc a b suc i f b R f suc b
37 31 36 bitrdi m = i a suc m f a R f suc a b suc i f b R f suc b
38 28 30 37 3anbi123d m = i f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f Fn suc suc i f = x f suc i = y b suc i f b R f suc b
39 38 exbidv m = i f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f f Fn suc suc i f = x f suc i = y b suc i f b R f suc b
40 fneq1 f = g f Fn suc suc i g Fn suc suc i
41 fveq1 f = g f = g
42 41 eqeq1d f = g f = x g = x
43 fveq1 f = g f suc i = g suc i
44 43 eqeq1d f = g f suc i = y g suc i = y
45 42 44 anbi12d f = g f = x f suc i = y g = x g suc i = y
46 fveq1 f = g f b = g b
47 fveq1 f = g f suc b = g suc b
48 46 47 breq12d f = g f b R f suc b g b R g suc b
49 48 ralbidv f = g b suc i f b R f suc b b suc i g b R g suc b
50 40 45 49 3anbi123d f = g f Fn suc suc i f = x f suc i = y b suc i f b R f suc b g Fn suc suc i g = x g suc i = y b suc i g b R g suc b
51 50 cbvexvw f f Fn suc suc i f = x f suc i = y b suc i f b R f suc b g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b
52 39 51 bitrdi m = i f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b
53 52 imbi1d m = i f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b x S y
54 53 albidv m = i y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y y g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b x S y
55 eqeq2 y = z g suc i = y g suc i = z
56 55 anbi2d y = z g = x g suc i = y g = x g suc i = z
57 56 3anbi2d y = z g Fn suc suc i g = x g suc i = y b suc i g b R g suc b g Fn suc suc i g = x g suc i = z b suc i g b R g suc b
58 57 exbidv y = z g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b
59 breq2 y = z x S y x S z
60 58 59 imbi12d y = z g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b x S y g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z
61 60 cbvalvw y g g Fn suc suc i g = x g suc i = y b suc i g b R g suc b x S y z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z
62 54 61 bitrdi m = i y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z
63 62 imbi2d m = i R S S S S y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z
64 suceq m = suc i suc m = suc suc i
65 suceq suc m = suc suc i suc suc m = suc suc suc i
66 64 65 syl m = suc i suc suc m = suc suc suc i
67 66 fneq2d m = suc i f Fn suc suc m f Fn suc suc suc i
68 64 fveqeq2d m = suc i f suc m = y f suc suc i = y
69 68 anbi2d m = suc i f = x f suc m = y f = x f suc suc i = y
70 64 raleqdv m = suc i a suc m f a R f suc a a suc suc i f a R f suc a
71 67 69 70 3anbi123d m = suc i f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a
72 71 exbidv m = suc i f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a
73 72 imbi1d m = suc i f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
74 73 albidv m = suc i y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
75 74 imbi2d m = suc i R S S S S y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y R S S S S y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
76 suceq m = n suc m = suc n
77 suceq suc m = suc n suc suc m = suc suc n
78 76 77 syl m = n suc suc m = suc suc n
79 78 fneq2d m = n f Fn suc suc m f Fn suc suc n
80 76 fveqeq2d m = n f suc m = y f suc n = y
81 80 anbi2d m = n f = x f suc m = y f = x f suc n = y
82 76 raleqdv m = n a suc m f a R f suc a a suc n f a R f suc a
83 79 81 82 3anbi123d m = n f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f Fn suc suc n f = x f suc n = y a suc n f a R f suc a
84 83 exbidv m = n f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a
85 84 imbi1d m = n f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
86 85 albidv m = n y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
87 86 imbi2d m = n R S S S S y f f Fn suc suc m f = x f suc m = y a suc m f a R f suc a x S y R S S S S y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
88 breq12 f = x f 1 𝑜 = y f R f 1 𝑜 x R y
89 88 biimpa f = x f 1 𝑜 = y f R f 1 𝑜 x R y
90 89 3adant1 f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x R y
91 ssbr R S x R y x S y
92 91 adantr R S S S S x R y x S y
93 90 92 syl5 R S S S S f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
94 93 exlimdv R S S S S f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
95 94 alrimiv R S S S S y f f Fn suc suc f = x f 1 𝑜 = y f R f 1 𝑜 x S y
96 fvex f suc i V
97 eqeq2 z = f suc i g suc i = z g suc i = f suc i
98 97 anbi2d z = f suc i g = x g suc i = z g = x g suc i = f suc i
99 98 3anbi2d z = f suc i g Fn suc suc i g = x g suc i = z b suc i g b R g suc b g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b
100 99 exbidv z = f suc i g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b
101 breq2 z = f suc i x S z x S f suc i
102 100 101 imbi12d z = f suc i g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b x S f suc i
103 96 102 spcv z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b x S f suc i
104 simpr1 i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f Fn suc suc suc i
105 sssucid suc suc i suc suc suc i
106 fnssres f Fn suc suc suc i suc suc i suc suc suc i f suc suc i Fn suc suc i
107 104 105 106 sylancl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc suc i Fn suc suc i
108 peano2 i ω suc i ω
109 108 ad2antrr i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a suc i ω
110 nnord suc i ω Ord suc i
111 109 110 syl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a Ord suc i
112 0elsuc Ord suc i suc suc i
113 111 112 syl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a suc suc i
114 113 fvresd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc suc i = f
115 simpr2l i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f = x
116 114 115 eqtrd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc suc i = x
117 vex i V
118 117 sucex suc i V
119 118 sucid suc i suc suc i
120 fvres suc i suc suc i f suc suc i suc i = f suc i
121 119 120 mp1i i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc suc i suc i = f suc i
122 simplr3 i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i a suc suc i f a R f suc a
123 elelsuc b suc i b suc suc i
124 123 adantl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i b suc suc i
125 35 122 124 rspcdva i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i f b R f suc b
126 124 fvresd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i f suc suc i b = f b
127 ordsucelsuc Ord suc i b suc i suc b suc suc i
128 111 127 syl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i suc b suc suc i
129 128 biimpa i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i suc b suc suc i
130 129 fvresd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i f suc suc i suc b = f suc b
131 125 126 130 3brtr4d i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i f suc suc i b R f suc suc i suc b
132 131 ralrimiva i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a b suc i f suc suc i b R f suc suc i suc b
133 vex f V
134 133 resex f suc suc i V
135 fneq1 g = f suc suc i g Fn suc suc i f suc suc i Fn suc suc i
136 fveq1 g = f suc suc i g = f suc suc i
137 136 eqeq1d g = f suc suc i g = x f suc suc i = x
138 fveq1 g = f suc suc i g suc i = f suc suc i suc i
139 138 eqeq1d g = f suc suc i g suc i = f suc i f suc suc i suc i = f suc i
140 137 139 anbi12d g = f suc suc i g = x g suc i = f suc i f suc suc i = x f suc suc i suc i = f suc i
141 fveq1 g = f suc suc i g b = f suc suc i b
142 fveq1 g = f suc suc i g suc b = f suc suc i suc b
143 141 142 breq12d g = f suc suc i g b R g suc b f suc suc i b R f suc suc i suc b
144 143 ralbidv g = f suc suc i b suc i g b R g suc b b suc i f suc suc i b R f suc suc i suc b
145 135 140 144 3anbi123d g = f suc suc i g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b f suc suc i Fn suc suc i f suc suc i = x f suc suc i suc i = f suc i b suc i f suc suc i b R f suc suc i suc b
146 134 145 spcev f suc suc i Fn suc suc i f suc suc i = x f suc suc i suc i = f suc i b suc i f suc suc i b R f suc suc i suc b g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b
147 107 116 121 132 146 syl121anc i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b
148 simplrl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a R S
149 simpr3 i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a a suc suc i f a R f suc a
150 ssbr R S f a R f suc a f a S f suc a
151 150 ralimdv R S a suc suc i f a R f suc a a suc suc i f a S f suc a
152 148 149 151 sylc i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a a suc suc i f a S f suc a
153 fveq2 a = suc i f a = f suc i
154 suceq a = suc i suc a = suc suc i
155 154 fveq2d a = suc i f suc a = f suc suc i
156 153 155 breq12d a = suc i f a S f suc a f suc i S f suc suc i
157 156 rspcv suc i suc suc i a suc suc i f a S f suc a f suc i S f suc suc i
158 119 152 157 mpsyl i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc i S f suc suc i
159 simpr2r i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc suc i = y
160 158 159 breqtrd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a f suc i S y
161 breq1 z = f suc i z S y f suc i S y
162 101 161 anbi12d z = f suc i x S z z S y x S f suc i f suc i S y
163 96 162 spcev x S f suc i f suc i S y z x S z z S y
164 vex x V
165 vex y V
166 164 165 brco x S S y z x S z z S y
167 163 166 sylibr x S f suc i f suc i S y x S S y
168 simplrr i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a S S S
169 168 ssbrd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S S y x S y
170 167 169 syl5 i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S f suc i f suc i S y x S y
171 160 170 mpan2d i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S f suc i x S y
172 147 171 embantd i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b x S f suc i x S y
173 172 ex i ω R S S S S f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b x S f suc i x S y
174 173 com23 i ω R S S S S g g Fn suc suc i g = x g suc i = f suc i b suc i g b R g suc b x S f suc i f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
175 103 174 syl5 i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
176 175 3impia i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
177 176 exlimdv i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
178 177 alrimiv i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
179 178 3exp i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
180 179 a2d i ω R S S S S z g g Fn suc suc i g = x g suc i = z b suc i g b R g suc b x S z R S S S S y f f Fn suc suc suc i f = x f suc suc i = y a suc suc i f a R f suc a x S y
181 24 63 75 87 95 180 finds n ω R S S S S y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
182 181 com12 R S S S S n ω y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
183 182 ralrimiv R S S S S n ω y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
184 ralcom4 n ω y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
185 r19.23v n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
186 185 albii y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
187 184 186 bitri n ω y f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
188 183 187 sylib R S S S S y n ω f f Fn suc suc n f = x f suc n = y a suc n f a R f suc a x S y
189 brttrcl2 Could not format ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) : No typesetting found for |- ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) with typecode |-
190 df-br Could not format ( x t++ R y <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( x t++ R y <-> <. x , y >. e. t++ R ) with typecode |-
191 189 190 bitr3i Could not format ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) : No typesetting found for |- ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) with typecode |-
192 df-br x S y x y S
193 191 192 imbi12i Could not format ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |-
194 193 albii Could not format ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |-
195 188 194 sylib Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |-
196 195 alrimiv Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |-
197 relttrcl Could not format Rel t++ R : No typesetting found for |- Rel t++ R with typecode |-
198 ssrel Could not format ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) : No typesetting found for |- ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) with typecode |-
199 197 198 ax-mp Could not format ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) : No typesetting found for |- ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) with typecode |-
200 196 199 sylibr Could not format ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) : No typesetting found for |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) with typecode |-