Metamath Proof Explorer


Theorem dmttrcl

Description: The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Assertion dmttrcl Could not format assertion : No typesetting found for |- dom t++ R = dom R with typecode |-

Proof

Step Hyp Ref Expression
1 df-ttrcl Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
2 1 dmeqi Could not format dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
3 dmopab dom x y | n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a = x | y n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a
4 2 3 eqtri Could not format dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
5 simpr2l n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a f = x
6 fveq2 a = f a = f
7 suceq a = suc a = suc
8 df-1o 1 𝑜 = suc
9 7 8 eqtr4di a = suc a = 1 𝑜
10 9 fveq2d a = f suc a = f 1 𝑜
11 6 10 breq12d a = f a R f suc a f R f 1 𝑜
12 simpr3 n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a a n f a R f suc a
13 eldif n ω 1 𝑜 n ω ¬ n 1 𝑜
14 0ex V
15 nnord n ω Ord n
16 ordelsuc V Ord n n suc n
17 14 15 16 sylancr n ω n suc n
18 8 sseq1i 1 𝑜 n suc n
19 1on 1 𝑜 On
20 19 onordi Ord 1 𝑜
21 ordtri1 Ord 1 𝑜 Ord n 1 𝑜 n ¬ n 1 𝑜
22 20 15 21 sylancr n ω 1 𝑜 n ¬ n 1 𝑜
23 18 22 bitr3id n ω suc n ¬ n 1 𝑜
24 17 23 bitr2d n ω ¬ n 1 𝑜 n
25 24 biimpa n ω ¬ n 1 𝑜 n
26 13 25 sylbi n ω 1 𝑜 n
27 26 adantr n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a n
28 11 12 27 rspcdva n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a f R f 1 𝑜
29 5 28 eqbrtrrd n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a x R f 1 𝑜
30 vex x V
31 fvex f 1 𝑜 V
32 30 31 breldm x R f 1 𝑜 x dom R
33 29 32 syl n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a x dom R
34 33 ex n ω 1 𝑜 f Fn suc n f = x f n = y a n f a R f suc a x dom R
35 34 exlimdv n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a x dom R
36 35 rexlimiv n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a x dom R
37 36 exlimiv y n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a x dom R
38 37 abssi x | y n ω 1 𝑜 f f Fn suc n f = x f n = y a n f a R f suc a dom R
39 4 38 eqsstri Could not format dom t++ R C_ dom R : No typesetting found for |- dom t++ R C_ dom R with typecode |-
40 dmresv dom R V = dom R
41 relres Rel R V
42 ssttrcl Could not format ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) : No typesetting found for |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) with typecode |-
43 41 42 ax-mp Could not format ( R |` _V ) C_ t++ ( R |` _V ) : No typesetting found for |- ( R |` _V ) C_ t++ ( R |` _V ) with typecode |-
44 ttrclresv Could not format t++ ( R |` _V ) = t++ R : No typesetting found for |- t++ ( R |` _V ) = t++ R with typecode |-
45 43 44 sseqtri Could not format ( R |` _V ) C_ t++ R : No typesetting found for |- ( R |` _V ) C_ t++ R with typecode |-
46 dmss Could not format ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) : No typesetting found for |- ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) with typecode |-
47 45 46 ax-mp Could not format dom ( R |` _V ) C_ dom t++ R : No typesetting found for |- dom ( R |` _V ) C_ dom t++ R with typecode |-
48 40 47 eqsstrri Could not format dom R C_ dom t++ R : No typesetting found for |- dom R C_ dom t++ R with typecode |-
49 39 48 eqssi Could not format dom t++ R = dom R : No typesetting found for |- dom t++ R = dom R with typecode |-