| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ttrcl |
|
| 2 |
1
|
rneqi |
|
| 3 |
|
rnopab |
|
| 4 |
2 3
|
eqtri |
|
| 5 |
|
fveq2 |
|
| 6 |
|
suceq |
|
| 7 |
6
|
fveq2d |
|
| 8 |
5 7
|
breq12d |
|
| 9 |
|
simpr3 |
|
| 10 |
|
df-1o |
|
| 11 |
10
|
difeq2i |
|
| 12 |
11
|
eleq2i |
|
| 13 |
|
peano1 |
|
| 14 |
|
eldifsucnn |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
|
dif0 |
|
| 17 |
16
|
rexeqi |
|
| 18 |
12 15 17
|
3bitri |
|
| 19 |
|
nnord |
|
| 20 |
|
ordunisuc |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
vex |
|
| 23 |
22
|
sucid |
|
| 24 |
21 23
|
eqeltrdi |
|
| 25 |
|
unieq |
|
| 26 |
|
id |
|
| 27 |
25 26
|
eleq12d |
|
| 28 |
24 27
|
syl5ibrcom |
|
| 29 |
28
|
rexlimiv |
|
| 30 |
18 29
|
sylbi |
|
| 31 |
30
|
adantr |
|
| 32 |
8 9 31
|
rspcdva |
|
| 33 |
|
suceq |
|
| 34 |
21 33
|
syl |
|
| 35 |
|
suceq |
|
| 36 |
25 35
|
syl |
|
| 37 |
36 26
|
eqeq12d |
|
| 38 |
34 37
|
syl5ibrcom |
|
| 39 |
38
|
rexlimiv |
|
| 40 |
18 39
|
sylbi |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
adantr |
|
| 43 |
|
simpr2r |
|
| 44 |
42 43
|
eqtrd |
|
| 45 |
32 44
|
breqtrd |
|
| 46 |
|
fvex |
|
| 47 |
|
vex |
|
| 48 |
46 47
|
brelrn |
|
| 49 |
45 48
|
syl |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
exlimdv |
|
| 52 |
51
|
rexlimiv |
|
| 53 |
52
|
exlimiv |
|
| 54 |
53
|
abssi |
|
| 55 |
4 54
|
eqsstri |
|
| 56 |
|
rnresv |
|
| 57 |
|
relres |
|
| 58 |
|
ssttrcl |
|
| 59 |
57 58
|
ax-mp |
|
| 60 |
|
ttrclresv |
|
| 61 |
59 60
|
sseqtri |
|
| 62 |
61
|
rnssi |
|
| 63 |
56 62
|
eqsstrri |
|
| 64 |
55 63
|
eqssi |
|