Step |
Hyp |
Ref |
Expression |
1 |
|
df-ttrcl |
⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
2 |
1
|
rneqi |
⊢ ran t++ 𝑅 = ran { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
3 |
|
rnopab |
⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } = { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
4 |
2 3
|
eqtri |
⊢ ran t++ 𝑅 = { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
5 |
|
fveq2 |
⊢ ( 𝑎 = ∪ 𝑛 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∪ 𝑛 ) ) |
6 |
|
suceq |
⊢ ( 𝑎 = ∪ 𝑛 → suc 𝑎 = suc ∪ 𝑛 ) |
7 |
6
|
fveq2d |
⊢ ( 𝑎 = ∪ 𝑛 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc ∪ 𝑛 ) ) |
8 |
5 7
|
breq12d |
⊢ ( 𝑎 = ∪ 𝑛 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 ( 𝑓 ‘ suc ∪ 𝑛 ) ) ) |
9 |
|
simpr3 |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
10 |
|
df-1o |
⊢ 1o = suc ∅ |
11 |
10
|
difeq2i |
⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
12 |
11
|
eleq2i |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ 𝑛 ∈ ( ω ∖ suc ∅ ) ) |
13 |
|
peano1 |
⊢ ∅ ∈ ω |
14 |
|
eldifsucnn |
⊢ ( ∅ ∈ ω → ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝑛 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ) |
16 |
|
dif0 |
⊢ ( ω ∖ ∅ ) = ω |
17 |
16
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ ( ω ∖ ∅ ) 𝑛 = suc 𝑥 ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
18 |
12 15 17
|
3bitri |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 ) |
19 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
20 |
|
ordunisuc |
⊢ ( Ord 𝑥 → ∪ suc 𝑥 = 𝑥 ) |
21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥 ) |
22 |
|
vex |
⊢ 𝑥 ∈ V |
23 |
22
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
24 |
21 23
|
eqeltrdi |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 ∈ suc 𝑥 ) |
25 |
|
unieq |
⊢ ( 𝑛 = suc 𝑥 → ∪ 𝑛 = ∪ suc 𝑥 ) |
26 |
|
id |
⊢ ( 𝑛 = suc 𝑥 → 𝑛 = suc 𝑥 ) |
27 |
25 26
|
eleq12d |
⊢ ( 𝑛 = suc 𝑥 → ( ∪ 𝑛 ∈ 𝑛 ↔ ∪ suc 𝑥 ∈ suc 𝑥 ) ) |
28 |
24 27
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ω → ( 𝑛 = suc 𝑥 → ∪ 𝑛 ∈ 𝑛 ) ) |
29 |
28
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 → ∪ 𝑛 ∈ 𝑛 ) |
30 |
18 29
|
sylbi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ∪ 𝑛 ∈ 𝑛 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∪ 𝑛 ∈ 𝑛 ) |
32 |
8 9 31
|
rspcdva |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 ( 𝑓 ‘ suc ∪ 𝑛 ) ) |
33 |
|
suceq |
⊢ ( ∪ suc 𝑥 = 𝑥 → suc ∪ suc 𝑥 = suc 𝑥 ) |
34 |
21 33
|
syl |
⊢ ( 𝑥 ∈ ω → suc ∪ suc 𝑥 = suc 𝑥 ) |
35 |
|
suceq |
⊢ ( ∪ 𝑛 = ∪ suc 𝑥 → suc ∪ 𝑛 = suc ∪ suc 𝑥 ) |
36 |
25 35
|
syl |
⊢ ( 𝑛 = suc 𝑥 → suc ∪ 𝑛 = suc ∪ suc 𝑥 ) |
37 |
36 26
|
eqeq12d |
⊢ ( 𝑛 = suc 𝑥 → ( suc ∪ 𝑛 = 𝑛 ↔ suc ∪ suc 𝑥 = suc 𝑥 ) ) |
38 |
34 37
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ω → ( 𝑛 = suc 𝑥 → suc ∪ 𝑛 = 𝑛 ) ) |
39 |
38
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝑛 = suc 𝑥 → suc ∪ 𝑛 = 𝑛 ) |
40 |
18 39
|
sylbi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → suc ∪ 𝑛 = 𝑛 ) |
41 |
40
|
fveq2d |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
43 |
|
simpr2r |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 𝑦 ) |
44 |
42 43
|
eqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc ∪ 𝑛 ) = 𝑦 ) |
45 |
32 44
|
breqtrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 𝑦 ) |
46 |
|
fvex |
⊢ ( 𝑓 ‘ ∪ 𝑛 ) ∈ V |
47 |
|
vex |
⊢ 𝑦 ∈ V |
48 |
46 47
|
brelrn |
⊢ ( ( 𝑓 ‘ ∪ 𝑛 ) 𝑅 𝑦 → 𝑦 ∈ ran 𝑅 ) |
49 |
45 48
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑦 ∈ ran 𝑅 ) |
50 |
49
|
ex |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) ) |
51 |
50
|
exlimdv |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) ) |
52 |
51
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) |
53 |
52
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑦 ∈ ran 𝑅 ) |
54 |
53
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ⊆ ran 𝑅 |
55 |
4 54
|
eqsstri |
⊢ ran t++ 𝑅 ⊆ ran 𝑅 |
56 |
|
rnresv |
⊢ ran ( 𝑅 ↾ V ) = ran 𝑅 |
57 |
|
relres |
⊢ Rel ( 𝑅 ↾ V ) |
58 |
|
ssttrcl |
⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) |
59 |
57 58
|
ax-mp |
⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
60 |
|
ttrclresv |
⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 |
61 |
59 60
|
sseqtri |
⊢ ( 𝑅 ↾ V ) ⊆ t++ 𝑅 |
62 |
61
|
rnssi |
⊢ ran ( 𝑅 ↾ V ) ⊆ ran t++ 𝑅 |
63 |
56 62
|
eqsstrri |
⊢ ran 𝑅 ⊆ ran t++ 𝑅 |
64 |
55 63
|
eqssi |
⊢ ran t++ 𝑅 = ran 𝑅 |