Step |
Hyp |
Ref |
Expression |
1 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
2 |
1
|
rneqi |
|- ran t++ R = ran { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
3 |
|
rnopab |
|- ran { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
4 |
2 3
|
eqtri |
|- ran t++ R = { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
5 |
|
fveq2 |
|- ( a = U. n -> ( f ` a ) = ( f ` U. n ) ) |
6 |
|
suceq |
|- ( a = U. n -> suc a = suc U. n ) |
7 |
6
|
fveq2d |
|- ( a = U. n -> ( f ` suc a ) = ( f ` suc U. n ) ) |
8 |
5 7
|
breq12d |
|- ( a = U. n -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` U. n ) R ( f ` suc U. n ) ) ) |
9 |
|
simpr3 |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
10 |
|
df-1o |
|- 1o = suc (/) |
11 |
10
|
difeq2i |
|- ( _om \ 1o ) = ( _om \ suc (/) ) |
12 |
11
|
eleq2i |
|- ( n e. ( _om \ 1o ) <-> n e. ( _om \ suc (/) ) ) |
13 |
|
peano1 |
|- (/) e. _om |
14 |
|
eldifsucnn |
|- ( (/) e. _om -> ( n e. ( _om \ suc (/) ) <-> E. x e. ( _om \ (/) ) n = suc x ) ) |
15 |
13 14
|
ax-mp |
|- ( n e. ( _om \ suc (/) ) <-> E. x e. ( _om \ (/) ) n = suc x ) |
16 |
|
dif0 |
|- ( _om \ (/) ) = _om |
17 |
16
|
rexeqi |
|- ( E. x e. ( _om \ (/) ) n = suc x <-> E. x e. _om n = suc x ) |
18 |
12 15 17
|
3bitri |
|- ( n e. ( _om \ 1o ) <-> E. x e. _om n = suc x ) |
19 |
|
nnord |
|- ( x e. _om -> Ord x ) |
20 |
|
ordunisuc |
|- ( Ord x -> U. suc x = x ) |
21 |
19 20
|
syl |
|- ( x e. _om -> U. suc x = x ) |
22 |
|
vex |
|- x e. _V |
23 |
22
|
sucid |
|- x e. suc x |
24 |
21 23
|
eqeltrdi |
|- ( x e. _om -> U. suc x e. suc x ) |
25 |
|
unieq |
|- ( n = suc x -> U. n = U. suc x ) |
26 |
|
id |
|- ( n = suc x -> n = suc x ) |
27 |
25 26
|
eleq12d |
|- ( n = suc x -> ( U. n e. n <-> U. suc x e. suc x ) ) |
28 |
24 27
|
syl5ibrcom |
|- ( x e. _om -> ( n = suc x -> U. n e. n ) ) |
29 |
28
|
rexlimiv |
|- ( E. x e. _om n = suc x -> U. n e. n ) |
30 |
18 29
|
sylbi |
|- ( n e. ( _om \ 1o ) -> U. n e. n ) |
31 |
30
|
adantr |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> U. n e. n ) |
32 |
8 9 31
|
rspcdva |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` U. n ) R ( f ` suc U. n ) ) |
33 |
|
suceq |
|- ( U. suc x = x -> suc U. suc x = suc x ) |
34 |
21 33
|
syl |
|- ( x e. _om -> suc U. suc x = suc x ) |
35 |
|
suceq |
|- ( U. n = U. suc x -> suc U. n = suc U. suc x ) |
36 |
25 35
|
syl |
|- ( n = suc x -> suc U. n = suc U. suc x ) |
37 |
36 26
|
eqeq12d |
|- ( n = suc x -> ( suc U. n = n <-> suc U. suc x = suc x ) ) |
38 |
34 37
|
syl5ibrcom |
|- ( x e. _om -> ( n = suc x -> suc U. n = n ) ) |
39 |
38
|
rexlimiv |
|- ( E. x e. _om n = suc x -> suc U. n = n ) |
40 |
18 39
|
sylbi |
|- ( n e. ( _om \ 1o ) -> suc U. n = n ) |
41 |
40
|
fveq2d |
|- ( n e. ( _om \ 1o ) -> ( f ` suc U. n ) = ( f ` n ) ) |
42 |
41
|
adantr |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc U. n ) = ( f ` n ) ) |
43 |
|
simpr2r |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` n ) = y ) |
44 |
42 43
|
eqtrd |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc U. n ) = y ) |
45 |
32 44
|
breqtrd |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` U. n ) R y ) |
46 |
|
fvex |
|- ( f ` U. n ) e. _V |
47 |
|
vex |
|- y e. _V |
48 |
46 47
|
brelrn |
|- ( ( f ` U. n ) R y -> y e. ran R ) |
49 |
45 48
|
syl |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> y e. ran R ) |
50 |
49
|
ex |
|- ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) ) |
51 |
50
|
exlimdv |
|- ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) ) |
52 |
51
|
rexlimiv |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) |
53 |
52
|
exlimiv |
|- ( E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> y e. ran R ) |
54 |
53
|
abssi |
|- { y | E. x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ ran R |
55 |
4 54
|
eqsstri |
|- ran t++ R C_ ran R |
56 |
|
rnresv |
|- ran ( R |` _V ) = ran R |
57 |
|
relres |
|- Rel ( R |` _V ) |
58 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
59 |
57 58
|
ax-mp |
|- ( R |` _V ) C_ t++ ( R |` _V ) |
60 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
61 |
59 60
|
sseqtri |
|- ( R |` _V ) C_ t++ R |
62 |
61
|
rnssi |
|- ran ( R |` _V ) C_ ran t++ R |
63 |
56 62
|
eqsstrri |
|- ran R C_ ran t++ R |
64 |
55 63
|
eqssi |
|- ran t++ R = ran R |