| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
| 2 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
| 3 |
1 2
|
xpexd |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 × ran 𝑅 ) ∈ V ) |
| 4 |
|
relttrcl |
⊢ Rel t++ 𝑅 |
| 5 |
|
relssdmrn |
⊢ ( Rel t++ 𝑅 → t++ 𝑅 ⊆ ( dom t++ 𝑅 × ran t++ 𝑅 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ t++ 𝑅 ⊆ ( dom t++ 𝑅 × ran t++ 𝑅 ) |
| 7 |
|
dmttrcl |
⊢ dom t++ 𝑅 = dom 𝑅 |
| 8 |
|
rnttrcl |
⊢ ran t++ 𝑅 = ran 𝑅 |
| 9 |
7 8
|
xpeq12i |
⊢ ( dom t++ 𝑅 × ran t++ 𝑅 ) = ( dom 𝑅 × ran 𝑅 ) |
| 10 |
6 9
|
sseqtri |
⊢ t++ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) |
| 11 |
10
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 12 |
3 11
|
ssexd |
⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ∈ V ) |