Step |
Hyp |
Ref |
Expression |
1 |
|
ssintab |
⊢ ( t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ∀ 𝑧 ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) → t++ 𝑅 ⊆ 𝑧 ) ) |
2 |
|
ttrclss |
⊢ ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) → t++ 𝑅 ⊆ 𝑧 ) |
3 |
1 2
|
mpgbir |
⊢ t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
4 |
3
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
5 |
|
rabab |
⊢ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
6 |
5
|
inteqi |
⊢ ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
7 |
|
ttrclexg |
⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ∈ V ) |
8 |
|
ssttrcl |
⊢ ( Rel 𝑅 → 𝑅 ⊆ t++ 𝑅 ) |
9 |
|
ttrcltr |
⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 |
10 |
8 9
|
jctir |
⊢ ( Rel 𝑅 → ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) |
11 |
|
sseq2 |
⊢ ( 𝑧 = t++ 𝑅 → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++ 𝑅 ) ) |
12 |
|
coeq1 |
⊢ ( 𝑧 = t++ 𝑅 → ( 𝑧 ∘ 𝑧 ) = ( t++ 𝑅 ∘ 𝑧 ) ) |
13 |
|
coeq2 |
⊢ ( 𝑧 = t++ 𝑅 → ( t++ 𝑅 ∘ 𝑧 ) = ( t++ 𝑅 ∘ t++ 𝑅 ) ) |
14 |
12 13
|
eqtrd |
⊢ ( 𝑧 = t++ 𝑅 → ( 𝑧 ∘ 𝑧 ) = ( t++ 𝑅 ∘ t++ 𝑅 ) ) |
15 |
|
id |
⊢ ( 𝑧 = t++ 𝑅 → 𝑧 = t++ 𝑅 ) |
16 |
14 15
|
sseq12d |
⊢ ( 𝑧 = t++ 𝑅 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) |
17 |
11 16
|
anbi12d |
⊢ ( 𝑧 = t++ 𝑅 → ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) ) |
18 |
17
|
intminss |
⊢ ( ( t++ 𝑅 ∈ V ∧ ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) → ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
19 |
7 10 18
|
syl2an |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
20 |
6 19
|
eqsstrrid |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
21 |
4 20
|
eqssd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → t++ 𝑅 = ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |