Step |
Hyp |
Ref |
Expression |
1 |
|
ssintab |
|- ( t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } <-> A. z ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) ) |
2 |
|
ttrclss |
|- ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) |
3 |
1 2
|
mpgbir |
|- t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
4 |
3
|
a1i |
|- ( ( R e. V /\ Rel R ) -> t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |
5 |
|
rabab |
|- { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
6 |
5
|
inteqi |
|- |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
7 |
|
ttrclexg |
|- ( R e. V -> t++ R e. _V ) |
8 |
|
ssttrcl |
|- ( Rel R -> R C_ t++ R ) |
9 |
|
ttrcltr |
|- ( t++ R o. t++ R ) C_ t++ R |
10 |
8 9
|
jctir |
|- ( Rel R -> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) |
11 |
|
sseq2 |
|- ( z = t++ R -> ( R C_ z <-> R C_ t++ R ) ) |
12 |
|
coeq1 |
|- ( z = t++ R -> ( z o. z ) = ( t++ R o. z ) ) |
13 |
|
coeq2 |
|- ( z = t++ R -> ( t++ R o. z ) = ( t++ R o. t++ R ) ) |
14 |
12 13
|
eqtrd |
|- ( z = t++ R -> ( z o. z ) = ( t++ R o. t++ R ) ) |
15 |
|
id |
|- ( z = t++ R -> z = t++ R ) |
16 |
14 15
|
sseq12d |
|- ( z = t++ R -> ( ( z o. z ) C_ z <-> ( t++ R o. t++ R ) C_ t++ R ) ) |
17 |
11 16
|
anbi12d |
|- ( z = t++ R -> ( ( R C_ z /\ ( z o. z ) C_ z ) <-> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) ) |
18 |
17
|
intminss |
|- ( ( t++ R e. _V /\ ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
19 |
7 10 18
|
syl2an |
|- ( ( R e. V /\ Rel R ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
20 |
6 19
|
eqsstrrid |
|- ( ( R e. V /\ Rel R ) -> |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
21 |
4 20
|
eqssd |
|- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |