Metamath Proof Explorer


Theorem dfttrcl2

Description: When R is a set and a relationship, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Assertion dfttrcl2 Could not format assertion : No typesetting found for |- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssintab Could not format ( t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } <-> A. z ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) ) : No typesetting found for |- ( t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } <-> A. z ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) ) with typecode |-
2 ttrclss Could not format ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) : No typesetting found for |- ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) with typecode |-
3 1 2 mpgbir Could not format t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } : No typesetting found for |- t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } with typecode |-
4 3 a1i Could not format ( ( R e. V /\ Rel R ) -> t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) : No typesetting found for |- ( ( R e. V /\ Rel R ) -> t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) with typecode |-
5 rabab z V | R z z z z = z | R z z z z
6 5 inteqi z V | R z z z z = z | R z z z z
7 ttrclexg Could not format ( R e. V -> t++ R e. _V ) : No typesetting found for |- ( R e. V -> t++ R e. _V ) with typecode |-
8 ssttrcl Could not format ( Rel R -> R C_ t++ R ) : No typesetting found for |- ( Rel R -> R C_ t++ R ) with typecode |-
9 ttrcltr Could not format ( t++ R o. t++ R ) C_ t++ R : No typesetting found for |- ( t++ R o. t++ R ) C_ t++ R with typecode |-
10 8 9 jctir Could not format ( Rel R -> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) : No typesetting found for |- ( Rel R -> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) with typecode |-
11 sseq2 Could not format ( z = t++ R -> ( R C_ z <-> R C_ t++ R ) ) : No typesetting found for |- ( z = t++ R -> ( R C_ z <-> R C_ t++ R ) ) with typecode |-
12 coeq1 Could not format ( z = t++ R -> ( z o. z ) = ( t++ R o. z ) ) : No typesetting found for |- ( z = t++ R -> ( z o. z ) = ( t++ R o. z ) ) with typecode |-
13 coeq2 Could not format ( z = t++ R -> ( t++ R o. z ) = ( t++ R o. t++ R ) ) : No typesetting found for |- ( z = t++ R -> ( t++ R o. z ) = ( t++ R o. t++ R ) ) with typecode |-
14 12 13 eqtrd Could not format ( z = t++ R -> ( z o. z ) = ( t++ R o. t++ R ) ) : No typesetting found for |- ( z = t++ R -> ( z o. z ) = ( t++ R o. t++ R ) ) with typecode |-
15 id Could not format ( z = t++ R -> z = t++ R ) : No typesetting found for |- ( z = t++ R -> z = t++ R ) with typecode |-
16 14 15 sseq12d Could not format ( z = t++ R -> ( ( z o. z ) C_ z <-> ( t++ R o. t++ R ) C_ t++ R ) ) : No typesetting found for |- ( z = t++ R -> ( ( z o. z ) C_ z <-> ( t++ R o. t++ R ) C_ t++ R ) ) with typecode |-
17 11 16 anbi12d Could not format ( z = t++ R -> ( ( R C_ z /\ ( z o. z ) C_ z ) <-> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) ) : No typesetting found for |- ( z = t++ R -> ( ( R C_ z /\ ( z o. z ) C_ z ) <-> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) ) with typecode |-
18 17 intminss Could not format ( ( t++ R e. _V /\ ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) : No typesetting found for |- ( ( t++ R e. _V /\ ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) with typecode |-
19 7 10 18 syl2an Could not format ( ( R e. V /\ Rel R ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) : No typesetting found for |- ( ( R e. V /\ Rel R ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) with typecode |-
20 6 19 eqsstrrid Could not format ( ( R e. V /\ Rel R ) -> |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) : No typesetting found for |- ( ( R e. V /\ Rel R ) -> |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) with typecode |-
21 4 20 eqssd Could not format ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) : No typesetting found for |- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) with typecode |-