| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttrclselem.1 |
|- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
| 2 |
|
nn0suc |
|- ( N e. _om -> ( N = (/) \/ E. n e. _om N = suc n ) ) |
| 3 |
1
|
fveq1i |
|- ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) |
| 4 |
|
fveq2 |
|- ( N = (/) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
| 5 |
3 4
|
eqtrid |
|- ( N = (/) -> ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
| 6 |
|
rdg0g |
|- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
| 7 |
|
predss |
|- Pred ( R , A , X ) C_ A |
| 8 |
6 7
|
eqsstrdi |
|- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
| 9 |
|
rdg0n |
|- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = (/) ) |
| 10 |
|
0ss |
|- (/) C_ A |
| 11 |
9 10
|
eqsstrdi |
|- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
| 12 |
8 11
|
pm2.61i |
|- ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A |
| 13 |
5 12
|
eqsstrdi |
|- ( N = (/) -> ( F ` N ) C_ A ) |
| 14 |
|
nnon |
|- ( n e. _om -> n e. On ) |
| 15 |
|
nfcv |
|- F/_ b Pred ( R , A , X ) |
| 16 |
|
nfcv |
|- F/_ b n |
| 17 |
|
nfmpt1 |
|- F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) |
| 18 |
17 15
|
nfrdg |
|- F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
| 19 |
1 18
|
nfcxfr |
|- F/_ b F |
| 20 |
19 16
|
nffv |
|- F/_ b ( F ` n ) |
| 21 |
|
nfcv |
|- F/_ b Pred ( R , A , t ) |
| 22 |
20 21
|
nfiun |
|- F/_ b U_ t e. ( F ` n ) Pred ( R , A , t ) |
| 23 |
|
predeq3 |
|- ( w = t -> Pred ( R , A , w ) = Pred ( R , A , t ) ) |
| 24 |
23
|
cbviunv |
|- U_ w e. b Pred ( R , A , w ) = U_ t e. b Pred ( R , A , t ) |
| 25 |
|
iuneq1 |
|- ( b = ( F ` n ) -> U_ t e. b Pred ( R , A , t ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
| 26 |
24 25
|
eqtrid |
|- ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
| 27 |
15 16 22 1 26
|
rdgsucmptf |
|- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
| 28 |
|
iunss |
|- ( U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A <-> A. t e. ( F ` n ) Pred ( R , A , t ) C_ A ) |
| 29 |
|
predss |
|- Pred ( R , A , t ) C_ A |
| 30 |
29
|
a1i |
|- ( t e. ( F ` n ) -> Pred ( R , A , t ) C_ A ) |
| 31 |
28 30
|
mprgbir |
|- U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A |
| 32 |
27 31
|
eqsstrdi |
|- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 33 |
14 32
|
sylan |
|- ( ( n e. _om /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 34 |
15 16 22 1 26
|
rdgsucmptnf |
|- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) = (/) ) |
| 35 |
34 10
|
eqsstrdi |
|- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) C_ A ) |
| 36 |
35
|
adantl |
|- ( ( n e. _om /\ -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 37 |
33 36
|
pm2.61dan |
|- ( n e. _om -> ( F ` suc n ) C_ A ) |
| 38 |
|
fveq2 |
|- ( N = suc n -> ( F ` N ) = ( F ` suc n ) ) |
| 39 |
38
|
sseq1d |
|- ( N = suc n -> ( ( F ` N ) C_ A <-> ( F ` suc n ) C_ A ) ) |
| 40 |
37 39
|
syl5ibrcom |
|- ( n e. _om -> ( N = suc n -> ( F ` N ) C_ A ) ) |
| 41 |
40
|
rexlimiv |
|- ( E. n e. _om N = suc n -> ( F ` N ) C_ A ) |
| 42 |
13 41
|
jaoi |
|- ( ( N = (/) \/ E. n e. _om N = suc n ) -> ( F ` N ) C_ A ) |
| 43 |
2 42
|
syl |
|- ( N e. _om -> ( F ` N ) C_ A ) |