Step |
Hyp |
Ref |
Expression |
1 |
|
ttrclselem.1 |
|- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
2 |
|
nn0suc |
|- ( N e. _om -> ( N = (/) \/ E. n e. _om N = suc n ) ) |
3 |
1
|
fveq1i |
|- ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) |
4 |
|
fveq2 |
|- ( N = (/) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
5 |
3 4
|
eqtrid |
|- ( N = (/) -> ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
6 |
|
rdg0g |
|- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
7 |
|
predss |
|- Pred ( R , A , X ) C_ A |
8 |
6 7
|
eqsstrdi |
|- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
9 |
|
rdg0n |
|- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = (/) ) |
10 |
|
0ss |
|- (/) C_ A |
11 |
9 10
|
eqsstrdi |
|- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
12 |
8 11
|
pm2.61i |
|- ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A |
13 |
5 12
|
eqsstrdi |
|- ( N = (/) -> ( F ` N ) C_ A ) |
14 |
|
nnon |
|- ( n e. _om -> n e. On ) |
15 |
|
nfcv |
|- F/_ b Pred ( R , A , X ) |
16 |
|
nfcv |
|- F/_ b n |
17 |
|
nfmpt1 |
|- F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) |
18 |
17 15
|
nfrdg |
|- F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
19 |
1 18
|
nfcxfr |
|- F/_ b F |
20 |
19 16
|
nffv |
|- F/_ b ( F ` n ) |
21 |
|
nfcv |
|- F/_ b Pred ( R , A , t ) |
22 |
20 21
|
nfiun |
|- F/_ b U_ t e. ( F ` n ) Pred ( R , A , t ) |
23 |
|
predeq3 |
|- ( w = t -> Pred ( R , A , w ) = Pred ( R , A , t ) ) |
24 |
23
|
cbviunv |
|- U_ w e. b Pred ( R , A , w ) = U_ t e. b Pred ( R , A , t ) |
25 |
|
iuneq1 |
|- ( b = ( F ` n ) -> U_ t e. b Pred ( R , A , t ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
26 |
24 25
|
eqtrid |
|- ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
27 |
15 16 22 1 26
|
rdgsucmptf |
|- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
28 |
|
iunss |
|- ( U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A <-> A. t e. ( F ` n ) Pred ( R , A , t ) C_ A ) |
29 |
|
predss |
|- Pred ( R , A , t ) C_ A |
30 |
29
|
a1i |
|- ( t e. ( F ` n ) -> Pred ( R , A , t ) C_ A ) |
31 |
28 30
|
mprgbir |
|- U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A |
32 |
27 31
|
eqsstrdi |
|- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
33 |
14 32
|
sylan |
|- ( ( n e. _om /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
34 |
15 16 22 1 26
|
rdgsucmptnf |
|- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) = (/) ) |
35 |
34 10
|
eqsstrdi |
|- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) C_ A ) |
36 |
35
|
adantl |
|- ( ( n e. _om /\ -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
37 |
33 36
|
pm2.61dan |
|- ( n e. _om -> ( F ` suc n ) C_ A ) |
38 |
|
fveq2 |
|- ( N = suc n -> ( F ` N ) = ( F ` suc n ) ) |
39 |
38
|
sseq1d |
|- ( N = suc n -> ( ( F ` N ) C_ A <-> ( F ` suc n ) C_ A ) ) |
40 |
37 39
|
syl5ibrcom |
|- ( n e. _om -> ( N = suc n -> ( F ` N ) C_ A ) ) |
41 |
40
|
rexlimiv |
|- ( E. n e. _om N = suc n -> ( F ` N ) C_ A ) |
42 |
13 41
|
jaoi |
|- ( ( N = (/) \/ E. n e. _om N = suc n ) -> ( F ` N ) C_ A ) |
43 |
2 42
|
syl |
|- ( N e. _om -> ( F ` N ) C_ A ) |