Step |
Hyp |
Ref |
Expression |
1 |
|
ttrclselem.1 |
⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
2 |
|
nn0suc |
⊢ ( 𝑁 ∈ ω → ( 𝑁 = ∅ ∨ ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) ) |
3 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ 𝑁 ) |
4 |
|
fveq2 |
⊢ ( 𝑁 = ∅ → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ) |
5 |
3 4
|
eqtrid |
⊢ ( 𝑁 = ∅ → ( 𝐹 ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ) |
6 |
|
rdg0g |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
7 |
|
predss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 |
8 |
6 7
|
eqsstrdi |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 ) |
9 |
|
rdg0n |
⊢ ( ¬ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = ∅ ) |
10 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
11 |
9 10
|
eqsstrdi |
⊢ ( ¬ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 ) |
12 |
8 11
|
pm2.61i |
⊢ ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 |
13 |
5 12
|
eqsstrdi |
⊢ ( 𝑁 = ∅ → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
14 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑋 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑛 |
17 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) |
18 |
17 15
|
nfrdg |
⊢ Ⅎ 𝑏 rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
19 |
1 18
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐹 |
20 |
19 16
|
nffv |
⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑛 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) |
22 |
20 21
|
nfiun |
⊢ Ⅎ 𝑏 ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) |
23 |
|
predeq3 |
⊢ ( 𝑤 = 𝑡 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
24 |
23
|
cbviunv |
⊢ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑡 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) |
25 |
|
iuneq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑡 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
26 |
24 25
|
eqtrid |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
27 |
15 16 22 1 26
|
rdgsucmptf |
⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
28 |
|
iunss |
⊢ ( ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ↔ ∀ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ) |
29 |
|
predss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 |
30 |
29
|
a1i |
⊢ ( 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) → Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ) |
31 |
28 30
|
mprgbir |
⊢ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 |
32 |
27 31
|
eqsstrdi |
⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
33 |
14 32
|
sylan |
⊢ ( ( 𝑛 ∈ ω ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
34 |
15 16 22 1 26
|
rdgsucmptnf |
⊢ ( ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V → ( 𝐹 ‘ suc 𝑛 ) = ∅ ) |
35 |
34 10
|
eqsstrdi |
⊢ ( ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
36 |
35
|
adantl |
⊢ ( ( 𝑛 ∈ ω ∧ ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
37 |
33 36
|
pm2.61dan |
⊢ ( 𝑛 ∈ ω → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
38 |
|
fveq2 |
⊢ ( 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) = ( 𝐹 ‘ suc 𝑛 ) ) |
39 |
38
|
sseq1d |
⊢ ( 𝑁 = suc 𝑛 → ( ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ↔ ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) ) |
40 |
37 39
|
syl5ibrcom |
⊢ ( 𝑛 ∈ ω → ( 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) ) |
41 |
40
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
42 |
13 41
|
jaoi |
⊢ ( ( 𝑁 = ∅ ∨ ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
43 |
2 42
|
syl |
⊢ ( 𝑁 ∈ ω → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |