| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgsucmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | rdgsucmptf.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | rdgsucmptf.3 | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 4 |  | rdgsucmptf.4 | ⊢ 𝐹  =  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 5 |  | rdgsucmptf.5 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝐵 )  →  𝐶  =  𝐷 ) | 
						
							| 6 | 4 | fveq1i | ⊢ ( 𝐹 ‘ suc  𝐵 )  =  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 ) | 
						
							| 7 |  | rdgdmlim | ⊢ Lim  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 8 |  | limsuc | ⊢ ( Lim  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( 𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↔  suc  𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↔  suc  𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ) | 
						
							| 10 |  | rdgsucg | ⊢ ( 𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) ) ) | 
						
							| 11 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 )  =  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) | 
						
							| 12 | 11 | fveq2i | ⊢ ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 13 | 10 12 | eqtr4di | ⊢ ( 𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 14 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  V  ↦  𝐶 ) | 
						
							| 15 | 14 1 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 16 | 4 15 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 17 | 16 2 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  𝐶 )  =  ( 𝑥  ∈  V  ↦  𝐶 ) | 
						
							| 19 | 17 3 5 18 | fvmptnf | ⊢ ( ¬  𝐷  ∈  V  →  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  ∅ ) | 
						
							| 20 | 13 19 | sylan9eqr | ⊢ ( ( ¬  𝐷  ∈  V  ∧  𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ∅ ) | 
						
							| 21 | 20 | ex | ⊢ ( ¬  𝐷  ∈  V  →  ( 𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ∅ ) ) | 
						
							| 22 | 9 21 | biimtrrid | ⊢ ( ¬  𝐷  ∈  V  →  ( suc  𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ∅ ) ) | 
						
							| 23 |  | ndmfv | ⊢ ( ¬  suc  𝐵  ∈  dom  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ∅ ) | 
						
							| 24 | 22 23 | pm2.61d1 | ⊢ ( ¬  𝐷  ∈  V  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ∅ ) | 
						
							| 25 | 6 24 | eqtrid | ⊢ ( ¬  𝐷  ∈  V  →  ( 𝐹 ‘ suc  𝐵 )  =  ∅ ) |