Metamath Proof Explorer


Theorem rdgsucmptnf

Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with rdgsucmptf to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses rdgsucmptf.1 _xA
rdgsucmptf.2 _xB
rdgsucmptf.3 _xD
rdgsucmptf.4 F=recxVCA
rdgsucmptf.5 x=FBC=D
Assertion rdgsucmptnf ¬DVFsucB=

Proof

Step Hyp Ref Expression
1 rdgsucmptf.1 _xA
2 rdgsucmptf.2 _xB
3 rdgsucmptf.3 _xD
4 rdgsucmptf.4 F=recxVCA
5 rdgsucmptf.5 x=FBC=D
6 4 fveq1i FsucB=recxVCAsucB
7 rdgdmlim LimdomrecxVCA
8 limsuc LimdomrecxVCABdomrecxVCAsucBdomrecxVCA
9 7 8 ax-mp BdomrecxVCAsucBdomrecxVCA
10 rdgsucg BdomrecxVCArecxVCAsucB=xVCrecxVCAB
11 4 fveq1i FB=recxVCAB
12 11 fveq2i xVCFB=xVCrecxVCAB
13 10 12 eqtr4di BdomrecxVCArecxVCAsucB=xVCFB
14 nfmpt1 _xxVC
15 14 1 nfrdg _xrecxVCA
16 4 15 nfcxfr _xF
17 16 2 nffv _xFB
18 eqid xVC=xVC
19 17 3 5 18 fvmptnf ¬DVxVCFB=
20 13 19 sylan9eqr ¬DVBdomrecxVCArecxVCAsucB=
21 20 ex ¬DVBdomrecxVCArecxVCAsucB=
22 9 21 biimtrrid ¬DVsucBdomrecxVCArecxVCAsucB=
23 ndmfv ¬sucBdomrecxVCArecxVCAsucB=
24 22 23 pm2.61d1 ¬DVrecxVCAsucB=
25 6 24 eqtrid ¬DVFsucB=