Metamath Proof Explorer


Theorem rdgsucmpt2

Description: This version of rdgsucmpt avoids the not-free hypothesis of rdgsucmptf by using two substitutions instead of one. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses rdgsucmpt2.1 F=recxVCA
rdgsucmpt2.2 y=xE=C
rdgsucmpt2.3 y=FBE=D
Assertion rdgsucmpt2 BOnDVFsucB=D

Proof

Step Hyp Ref Expression
1 rdgsucmpt2.1 F=recxVCA
2 rdgsucmpt2.2 y=xE=C
3 rdgsucmpt2.3 y=FBE=D
4 nfcv _yA
5 nfcv _yB
6 nfcv _yD
7 2 cbvmptv yVE=xVC
8 rdgeq1 yVE=xVCrecyVEA=recxVCA
9 7 8 ax-mp recyVEA=recxVCA
10 1 9 eqtr4i F=recyVEA
11 4 5 6 10 3 rdgsucmptf BOnDVFsucB=D