Metamath Proof Explorer


Theorem rdgsucmptf

Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses rdgsucmptf.1 _xA
rdgsucmptf.2 _xB
rdgsucmptf.3 _xD
rdgsucmptf.4 F=recxVCA
rdgsucmptf.5 x=FBC=D
Assertion rdgsucmptf BOnDVFsucB=D

Proof

Step Hyp Ref Expression
1 rdgsucmptf.1 _xA
2 rdgsucmptf.2 _xB
3 rdgsucmptf.3 _xD
4 rdgsucmptf.4 F=recxVCA
5 rdgsucmptf.5 x=FBC=D
6 rdgsuc BOnrecxVCAsucB=xVCrecxVCAB
7 4 fveq1i FsucB=recxVCAsucB
8 4 fveq1i FB=recxVCAB
9 8 fveq2i xVCFB=xVCrecxVCAB
10 6 7 9 3eqtr4g BOnFsucB=xVCFB
11 fvex FBV
12 nfmpt1 _xxVC
13 12 1 nfrdg _xrecxVCA
14 4 13 nfcxfr _xF
15 14 2 nffv _xFB
16 eqid xVC=xVC
17 15 3 5 16 fvmptf FBVDVxVCFB=D
18 11 17 mpan DVxVCFB=D
19 10 18 sylan9eq BOnDVFsucB=D