| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgsucmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | rdgsucmptf.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | rdgsucmptf.3 | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 4 |  | rdgsucmptf.4 | ⊢ 𝐹  =  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 5 |  | rdgsucmptf.5 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝐵 )  →  𝐶  =  𝐷 ) | 
						
							| 6 |  | rdgsuc | ⊢ ( 𝐵  ∈  On  →  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) ) ) | 
						
							| 7 | 4 | fveq1i | ⊢ ( 𝐹 ‘ suc  𝐵 )  =  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ suc  𝐵 ) | 
						
							| 8 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 )  =  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) | 
						
							| 9 | 8 | fveq2i | ⊢ ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 10 | 6 7 9 | 3eqtr4g | ⊢ ( 𝐵  ∈  On  →  ( 𝐹 ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 11 |  | fvex | ⊢ ( 𝐹 ‘ 𝐵 )  ∈  V | 
						
							| 12 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  V  ↦  𝐶 ) | 
						
							| 13 | 12 1 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 14 | 4 13 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 15 | 14 2 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  𝐶 )  =  ( 𝑥  ∈  V  ↦  𝐶 ) | 
						
							| 17 | 15 3 5 16 | fvmptf | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  V  ∧  𝐷  ∈  𝑉 )  →  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  𝐷 ) | 
						
							| 18 | 11 17 | mpan | ⊢ ( 𝐷  ∈  𝑉  →  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  𝐷 ) | 
						
							| 19 | 10 18 | sylan9eq | ⊢ ( ( 𝐵  ∈  On  ∧  𝐷  ∈  𝑉 )  →  ( 𝐹 ‘ suc  𝐵 )  =  𝐷 ) |