| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgsucmpt2.1 | ⊢ 𝐹  =  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 2 |  | rdgsucmpt2.2 | ⊢ ( 𝑦  =  𝑥  →  𝐸  =  𝐶 ) | 
						
							| 3 |  | rdgsucmpt2.3 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝐵 )  →  𝐸  =  𝐷 ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 7 | 2 | cbvmptv | ⊢ ( 𝑦  ∈  V  ↦  𝐸 )  =  ( 𝑥  ∈  V  ↦  𝐶 ) | 
						
							| 8 |  | rdgeq1 | ⊢ ( ( 𝑦  ∈  V  ↦  𝐸 )  =  ( 𝑥  ∈  V  ↦  𝐶 )  →  rec ( ( 𝑦  ∈  V  ↦  𝐸 ) ,  𝐴 )  =  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ rec ( ( 𝑦  ∈  V  ↦  𝐸 ) ,  𝐴 )  =  rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 ) | 
						
							| 10 | 1 9 | eqtr4i | ⊢ 𝐹  =  rec ( ( 𝑦  ∈  V  ↦  𝐸 ) ,  𝐴 ) | 
						
							| 11 | 4 5 6 10 3 | rdgsucmptf | ⊢ ( ( 𝐵  ∈  On  ∧  𝐷  ∈  𝑉 )  →  ( 𝐹 ‘ suc  𝐵 )  =  𝐷 ) |