Step |
Hyp |
Ref |
Expression |
1 |
|
ttrclselem.1 |
⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
2 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
3 |
|
df-1o |
⊢ 1o = suc ∅ |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
5 |
|
suceq |
⊢ ( suc 𝑚 = 1o → suc suc 𝑚 = suc 1o ) |
6 |
4 5
|
syl |
⊢ ( 𝑚 = ∅ → suc suc 𝑚 = suc 1o ) |
7 |
6
|
fneq2d |
⊢ ( 𝑚 = ∅ → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc 1o ) ) |
8 |
4
|
fveqeq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
10 |
|
df1o2 |
⊢ 1o = { ∅ } |
11 |
4 10
|
eqtrdi |
⊢ ( 𝑚 = ∅ → suc 𝑚 = { ∅ } ) |
12 |
11
|
raleqdv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) |
15 |
|
suceq |
⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) |
16 |
15 3
|
eqtr4di |
⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
17 |
16
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
18 |
14 17
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) |
19 |
13 18
|
ralsn |
⊢ ( ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) |
20 |
12 19
|
bitrdi |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) |
21 |
7 9 20
|
3anbi123d |
⊢ ( 𝑚 = ∅ → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) |
22 |
21
|
exbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ∅ ) ) |
24 |
23
|
eleq2d |
⊢ ( 𝑚 = ∅ → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
25 |
22 24
|
bibi12d |
⊢ ( 𝑚 = ∅ → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
26 |
25
|
albidv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) ) |
28 |
|
suceq |
⊢ ( 𝑚 = 𝑛 → suc 𝑚 = suc 𝑛 ) |
29 |
|
suceq |
⊢ ( suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
30 |
28 29
|
syl |
⊢ ( 𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
31 |
30
|
fneq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
32 |
28
|
fveqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ) |
33 |
32
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
34 |
28
|
raleqdv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑐 ) ) |
36 |
|
suceq |
⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) |
37 |
36
|
fveq2d |
⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
38 |
35 37
|
breq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) |
39 |
38
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) |
40 |
34 39
|
bitrdi |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) |
41 |
31 33 40
|
3anbi123d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) ) |
42 |
41
|
exbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) ) |
43 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn suc suc 𝑛 ↔ 𝑔 Fn suc suc 𝑛 ) ) |
44 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
45 |
44
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑦 ) ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) ) |
47 |
46
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) |
48 |
45 47
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
49 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑐 ) = ( 𝑔 ‘ 𝑐 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑐 ) ) |
51 |
49 50
|
breq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
52 |
51
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
53 |
43 48 52
|
3anbi123d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
54 |
53
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
55 |
42 54
|
bitrdi |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
57 |
56
|
eleq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
58 |
55 57
|
bibi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
59 |
58
|
albidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
60 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑧 ) ) |
61 |
60
|
anbi1d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
62 |
61
|
3anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
63 |
62
|
exbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
64 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
65 |
63 64
|
bibi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
66 |
65
|
cbvalvw |
⊢ ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
67 |
59 66
|
bitrdi |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
68 |
67
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
69 |
|
suceq |
⊢ ( 𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛 ) |
70 |
|
suceq |
⊢ ( suc 𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 ) |
71 |
69 70
|
syl |
⊢ ( 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 ) |
72 |
71
|
fneq2d |
⊢ ( 𝑚 = suc 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑛 ) ) |
73 |
69
|
fveqeq2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) |
74 |
73
|
anbi2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) ) |
75 |
69
|
raleqdv |
⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
76 |
72 74 75
|
3anbi123d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
77 |
76
|
exbidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
78 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ suc 𝑛 ) ) |
79 |
78
|
eleq2d |
⊢ ( 𝑚 = suc 𝑛 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
80 |
77 79
|
bibi12d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) |
81 |
80
|
albidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) |
82 |
81
|
imbi2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
83 |
|
suceq |
⊢ ( 𝑚 = 𝑁 → suc 𝑚 = suc 𝑁 ) |
84 |
|
suceq |
⊢ ( suc 𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁 ) |
85 |
83 84
|
syl |
⊢ ( 𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁 ) |
86 |
85
|
fneq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑁 ) ) |
87 |
83
|
fveqeq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ) |
88 |
87
|
anbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ) ) |
89 |
83
|
raleqdv |
⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
90 |
86 88 89
|
3anbi123d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
91 |
90
|
exbidv |
⊢ ( 𝑚 = 𝑁 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
92 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑁 ) ) |
93 |
92
|
eleq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
94 |
91 93
|
bibi12d |
⊢ ( 𝑚 = 𝑁 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
95 |
94
|
albidv |
⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
96 |
95
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
97 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ 1o ) = 𝑥 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) ) |
98 |
97
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
99 |
98
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) ) |
100 |
99
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) ) |
101 |
|
vex |
⊢ 𝑦 ∈ V |
102 |
|
vex |
⊢ 𝑥 ∈ V |
103 |
101 102
|
ifex |
⊢ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ∈ V |
104 |
|
eqid |
⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) |
105 |
103 104
|
fnmpti |
⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o |
106 |
|
equid |
⊢ 𝑦 = 𝑦 |
107 |
|
equid |
⊢ 𝑥 = 𝑥 |
108 |
106 107
|
pm3.2i |
⊢ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) |
109 |
|
1oex |
⊢ 1o ∈ V |
110 |
109
|
sucex |
⊢ suc 1o ∈ V |
111 |
110
|
mptex |
⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ∈ V |
112 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 Fn suc 1o ↔ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ) ) |
113 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) ) |
114 |
|
1on |
⊢ 1o ∈ On |
115 |
114
|
onordi |
⊢ Ord 1o |
116 |
|
0elsuc |
⊢ ( Ord 1o → ∅ ∈ suc 1o ) |
117 |
|
iftrue |
⊢ ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑦 ) |
118 |
117 104 101
|
fvmpt |
⊢ ( ∅ ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦 ) |
119 |
115 116 118
|
mp2b |
⊢ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦 |
120 |
113 119
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 ) |
121 |
120
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ 𝑦 = 𝑦 ) ) |
122 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) ) |
123 |
109
|
sucid |
⊢ 1o ∈ suc 1o |
124 |
|
eqeq1 |
⊢ ( 𝑏 = 1o → ( 𝑏 = ∅ ↔ 1o = ∅ ) ) |
125 |
124
|
ifbid |
⊢ ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = if ( 1o = ∅ , 𝑦 , 𝑥 ) ) |
126 |
|
1n0 |
⊢ 1o ≠ ∅ |
127 |
126
|
neii |
⊢ ¬ 1o = ∅ |
128 |
127
|
iffalsei |
⊢ if ( 1o = ∅ , 𝑦 , 𝑥 ) = 𝑥 |
129 |
125 128
|
eqtrdi |
⊢ ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑥 ) |
130 |
129 104 102
|
fvmpt |
⊢ ( 1o ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥 ) |
131 |
123 130
|
ax-mp |
⊢ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥 |
132 |
122 131
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = 𝑥 ) |
133 |
132
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ 1o ) = 𝑥 ↔ 𝑥 = 𝑥 ) ) |
134 |
121 133
|
anbi12d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) ) |
135 |
112 134
|
anbi12d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) ) ) |
136 |
111 135
|
spcev |
⊢ ( ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ) |
137 |
105 108 136
|
mp2an |
⊢ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) |
138 |
100 137
|
vtoclg |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
139 |
138
|
adantl |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
140 |
139
|
biantrurd |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) ) |
141 |
101
|
elpred |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
142 |
141
|
adantl |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
143 |
|
brres |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
144 |
143
|
adantl |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
145 |
144
|
anbi2d |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) ) |
146 |
140 142 145
|
3bitr4rd |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
147 |
|
df-3an |
⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) |
148 |
|
breq12 |
⊢ ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
149 |
148
|
adantl |
⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
150 |
149
|
pm5.32i |
⊢ ( ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
151 |
147 150
|
bitri |
⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
152 |
151
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
153 |
|
19.41v |
⊢ ( ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
154 |
152 153
|
bitri |
⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
155 |
154
|
a1i |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) ) |
156 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ ∅ ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) |
157 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
158 |
157
|
ancoms |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
159 |
|
rdg0g |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
160 |
158 159
|
syl |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
161 |
156 160
|
eqtrid |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
162 |
161
|
eleq2d |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 ‘ ∅ ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
163 |
146 155 162
|
3bitr4d |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
164 |
163
|
alrimiv |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
165 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
166 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
167 |
165 166
|
bitri |
⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
168 |
101
|
elpred |
⊢ ( 𝑧 ∈ V → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
169 |
168
|
elv |
⊢ ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
170 |
169
|
anbi2i |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
171 |
|
anbi1 |
⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
172 |
170 171
|
bitr4id |
⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
173 |
172
|
alexbii |
⊢ ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
174 |
173
|
3ad2ant3 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
175 |
167 174
|
syl5bb |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
176 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
177 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
178 |
1
|
ttrclselem1 |
⊢ ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |
179 |
178
|
adantr |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |
180 |
|
dfse3 |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
181 |
180
|
biimpi |
⊢ ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
182 |
181
|
adantl |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
183 |
|
ssralv |
⊢ ( ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) ) |
184 |
179 182 183
|
sylc |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
185 |
184
|
adantrr |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
186 |
|
iunexg |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ V ∧ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
187 |
177 185 186
|
sylancr |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
188 |
|
nfcv |
⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑋 ) |
189 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑛 |
190 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) |
191 |
190 188
|
nfrdg |
⊢ Ⅎ 𝑏 rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
192 |
1 191
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐹 |
193 |
192 189
|
nffv |
⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑛 ) |
194 |
|
nfcv |
⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) |
195 |
193 194
|
nfiun |
⊢ Ⅎ 𝑏 ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) |
196 |
|
predeq3 |
⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
197 |
196
|
cbviunv |
⊢ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑧 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) |
198 |
|
iuneq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑧 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
199 |
197 198
|
eqtrid |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
200 |
188 189 195 1 199
|
rdgsucmptf |
⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
201 |
176 187 200
|
syl2an2r |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
202 |
201
|
3adant3 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
203 |
202
|
eleq2d |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ↔ 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
204 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) |
205 |
204
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) ) |
206 |
205
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
207 |
206
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
208 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) |
209 |
208
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
210 |
209
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
211 |
210
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
212 |
211
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
213 |
212
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
214 |
207 213
|
bibi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) |
215 |
214
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ↔ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) ) |
216 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑏 ) ∈ V |
217 |
|
eqid |
⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) |
218 |
216 217
|
fnmpti |
⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 |
219 |
218
|
a1i |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ) |
220 |
|
peano2 |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
221 |
220
|
adantr |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → suc 𝑛 ∈ ω ) |
222 |
|
nnord |
⊢ ( suc 𝑛 ∈ ω → Ord suc 𝑛 ) |
223 |
221 222
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → Ord suc 𝑛 ) |
224 |
|
0elsuc |
⊢ ( Ord suc 𝑛 → ∅ ∈ suc suc 𝑛 ) |
225 |
223 224
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ suc suc 𝑛 ) |
226 |
|
suceq |
⊢ ( 𝑏 = ∅ → suc 𝑏 = suc ∅ ) |
227 |
226
|
fveq2d |
⊢ ( 𝑏 = ∅ → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc ∅ ) ) |
228 |
|
fvex |
⊢ ( 𝑓 ‘ suc ∅ ) ∈ V |
229 |
227 217 228
|
fvmpt |
⊢ ( ∅ ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) |
230 |
225 229
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) |
231 |
|
vex |
⊢ 𝑛 ∈ V |
232 |
231
|
sucex |
⊢ suc 𝑛 ∈ V |
233 |
232
|
sucid |
⊢ suc 𝑛 ∈ suc suc 𝑛 |
234 |
|
suceq |
⊢ ( 𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛 ) |
235 |
234
|
fveq2d |
⊢ ( 𝑏 = suc 𝑛 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
236 |
|
fvex |
⊢ ( 𝑓 ‘ suc suc 𝑛 ) ∈ V |
237 |
235 217 236
|
fvmpt |
⊢ ( suc 𝑛 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
238 |
233 237
|
mp1i |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
239 |
|
simpr2r |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) |
240 |
238 239
|
eqtrd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) |
241 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
242 |
|
suceq |
⊢ ( 𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐 ) |
243 |
242
|
fveq2d |
⊢ ( 𝑎 = suc 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
244 |
241 243
|
breq12d |
⊢ ( 𝑎 = suc 𝑐 → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ suc 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) ) ) |
245 |
|
simplr3 |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) |
246 |
|
ordsucelsuc |
⊢ ( Ord suc 𝑛 → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) ) |
247 |
223 246
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) ) |
248 |
247
|
biimpa |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → suc 𝑐 ∈ suc suc 𝑛 ) |
249 |
244 245 248
|
rspcdva |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( 𝑓 ‘ suc 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) ) |
250 |
|
elelsuc |
⊢ ( 𝑐 ∈ suc 𝑛 → 𝑐 ∈ suc suc 𝑛 ) |
251 |
|
suceq |
⊢ ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 ) |
252 |
251
|
fveq2d |
⊢ ( 𝑏 = 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
253 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑐 ) ∈ V |
254 |
252 217 253
|
fvmpt |
⊢ ( 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
255 |
250 254
|
syl |
⊢ ( 𝑐 ∈ suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
256 |
255
|
adantl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
257 |
|
suceq |
⊢ ( 𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐 ) |
258 |
257
|
fveq2d |
⊢ ( 𝑏 = suc 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
259 |
|
fvex |
⊢ ( 𝑓 ‘ suc suc 𝑐 ) ∈ V |
260 |
258 217 259
|
fvmpt |
⊢ ( suc 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
261 |
248 260
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
262 |
249 256 261
|
3brtr4d |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) |
263 |
262
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) |
264 |
232
|
sucex |
⊢ suc suc 𝑛 ∈ V |
265 |
264
|
mptex |
⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ∈ V |
266 |
|
fneq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 Fn suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ) ) |
267 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) ) |
268 |
267
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) ) |
269 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑛 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) ) |
270 |
269
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ) |
271 |
268 270
|
anbi12d |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ) ) |
272 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ 𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) |
273 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) |
274 |
272 273
|
breq12d |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) |
275 |
274
|
ralbidv |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) |
276 |
266 271 275
|
3anbi123d |
⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) ) |
277 |
265 276
|
spcev |
⊢ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
278 |
219 230 240 263 277
|
syl121anc |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
279 |
|
simpr2l |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 ) |
280 |
15
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc ∅ ) ) |
281 |
14 280
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) |
282 |
|
simpr3 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) |
283 |
281 282 225
|
rspcdva |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) |
284 |
279 283
|
eqbrtrrd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) |
285 |
|
eqeq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 ‘ ∅ ) = 𝑧 ↔ ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) ) |
286 |
285
|
anbi1d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ) ) |
287 |
286
|
3anbi2d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
288 |
287
|
exbidv |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
289 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) |
290 |
288 289
|
anbi12d |
⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) ) |
291 |
228 290
|
spcev |
⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) |
292 |
278 284 291
|
syl2anc |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) |
293 |
292
|
ex |
⊢ ( 𝑛 ∈ ω → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
294 |
293
|
exlimdv |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
295 |
|
fvex |
⊢ ( 𝑔 ‘ ∪ 𝑏 ) ∈ V |
296 |
101 295
|
ifex |
⊢ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ∈ V |
297 |
|
eqid |
⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) |
298 |
296 297
|
fnmpti |
⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 |
299 |
298
|
a1i |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ) |
300 |
|
peano2 |
⊢ ( suc 𝑛 ∈ ω → suc suc 𝑛 ∈ ω ) |
301 |
220 300
|
syl |
⊢ ( 𝑛 ∈ ω → suc suc 𝑛 ∈ ω ) |
302 |
301
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → suc suc 𝑛 ∈ ω ) |
303 |
|
nnord |
⊢ ( suc suc 𝑛 ∈ ω → Ord suc suc 𝑛 ) |
304 |
302 303
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → Ord suc suc 𝑛 ) |
305 |
|
0elsuc |
⊢ ( Ord suc suc 𝑛 → ∅ ∈ suc suc suc 𝑛 ) |
306 |
304 305
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∅ ∈ suc suc suc 𝑛 ) |
307 |
|
iftrue |
⊢ ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = 𝑦 ) |
308 |
307 297 101
|
fvmpt |
⊢ ( ∅ ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) |
309 |
306 308
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) |
310 |
264
|
sucid |
⊢ suc suc 𝑛 ∈ suc suc suc 𝑛 |
311 |
|
eqeq1 |
⊢ ( 𝑏 = suc suc 𝑛 → ( 𝑏 = ∅ ↔ suc suc 𝑛 = ∅ ) ) |
312 |
|
unieq |
⊢ ( 𝑏 = suc suc 𝑛 → ∪ 𝑏 = ∪ suc suc 𝑛 ) |
313 |
312
|
fveq2d |
⊢ ( 𝑏 = suc suc 𝑛 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
314 |
311 313
|
ifbieq2d |
⊢ ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) ) |
315 |
|
nsuceq0 |
⊢ suc suc 𝑛 ≠ ∅ |
316 |
315
|
neii |
⊢ ¬ suc suc 𝑛 = ∅ |
317 |
316
|
iffalsei |
⊢ if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) |
318 |
314 317
|
eqtrdi |
⊢ ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
319 |
|
fvex |
⊢ ( 𝑔 ‘ ∪ suc suc 𝑛 ) ∈ V |
320 |
318 297 319
|
fvmpt |
⊢ ( suc suc 𝑛 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
321 |
310 320
|
mp1i |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
322 |
220
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → suc 𝑛 ∈ ω ) |
323 |
322 222
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → Ord suc 𝑛 ) |
324 |
|
ordunisuc |
⊢ ( Ord suc 𝑛 → ∪ suc suc 𝑛 = suc 𝑛 ) |
325 |
323 324
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∪ suc suc 𝑛 = suc 𝑛 ) |
326 |
325
|
fveq2d |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ ∪ suc suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) ) |
327 |
|
simp22r |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) |
328 |
321 326 327
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) |
329 |
|
simpl3 |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) |
330 |
|
iftrue |
⊢ ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = 𝑦 ) |
331 |
330
|
adantl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = 𝑦 ) |
332 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑔 ‘ 𝑎 ) = ( 𝑔 ‘ ∅ ) ) |
333 |
|
simp22l |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ ∅ ) = 𝑧 ) |
334 |
332 333
|
sylan9eqr |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → ( 𝑔 ‘ 𝑎 ) = 𝑧 ) |
335 |
329 331 334
|
3brtr4d |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) |
336 |
335
|
ex |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
337 |
336
|
adantr |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
338 |
|
ordsucelsuc |
⊢ ( Ord suc 𝑛 → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) |
339 |
323 338
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) |
340 |
|
elnn |
⊢ ( ( 𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω ) → 𝑏 ∈ ω ) |
341 |
322 340
|
sylan2 |
⊢ ( ( 𝑏 ∈ suc 𝑛 ∧ ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) → 𝑏 ∈ ω ) |
342 |
341
|
ancoms |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → 𝑏 ∈ ω ) |
343 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
344 |
342 343
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → Ord 𝑏 ) |
345 |
|
ordunisuc |
⊢ ( Ord 𝑏 → ∪ suc 𝑏 = 𝑏 ) |
346 |
344 345
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ∪ suc 𝑏 = 𝑏 ) |
347 |
346
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) = ( 𝑔 ‘ 𝑏 ) ) |
348 |
|
simp23 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) |
349 |
|
fveq2 |
⊢ ( 𝑐 = 𝑏 → ( 𝑔 ‘ 𝑐 ) = ( 𝑔 ‘ 𝑏 ) ) |
350 |
|
suceq |
⊢ ( 𝑐 = 𝑏 → suc 𝑐 = suc 𝑏 ) |
351 |
350
|
fveq2d |
⊢ ( 𝑐 = 𝑏 → ( 𝑔 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑏 ) ) |
352 |
349 351
|
breq12d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
353 |
352
|
rspcv |
⊢ ( 𝑏 ∈ suc 𝑛 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) → ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
354 |
348 353
|
mpan9 |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
355 |
347 354
|
eqbrtrd |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
356 |
355
|
ex |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
357 |
339 356
|
sylbird |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( suc 𝑏 ∈ suc suc 𝑛 → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
358 |
357
|
imp |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
359 |
|
eleq1 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) |
360 |
359
|
anbi2d |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) ↔ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) ) ) |
361 |
|
eqeq1 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 = ∅ ↔ suc 𝑏 = ∅ ) ) |
362 |
|
unieq |
⊢ ( 𝑎 = suc 𝑏 → ∪ 𝑎 = ∪ suc 𝑏 ) |
363 |
362
|
fveq2d |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑔 ‘ ∪ 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑏 ) ) |
364 |
361 363
|
ifbieq2d |
⊢ ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑏 ) ) ) |
365 |
|
nsuceq0 |
⊢ suc 𝑏 ≠ ∅ |
366 |
365
|
neii |
⊢ ¬ suc 𝑏 = ∅ |
367 |
366
|
iffalsei |
⊢ if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑏 ) ) = ( 𝑔 ‘ ∪ suc 𝑏 ) |
368 |
364 367
|
eqtrdi |
⊢ ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = ( 𝑔 ‘ ∪ suc 𝑏 ) ) |
369 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑔 ‘ 𝑎 ) = ( 𝑔 ‘ suc 𝑏 ) ) |
370 |
368 369
|
breq12d |
⊢ ( 𝑎 = suc 𝑏 → ( if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ↔ ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
371 |
360 370
|
imbi12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ↔ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
372 |
358 371
|
mpbiri |
⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
373 |
372
|
com12 |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
374 |
373
|
rexlimdvw |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
375 |
|
elnn |
⊢ ( ( 𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω ) → 𝑎 ∈ ω ) |
376 |
375
|
ancoms |
⊢ ( ( suc suc 𝑛 ∈ ω ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω ) |
377 |
302 376
|
sylan |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω ) |
378 |
|
nn0suc |
⊢ ( 𝑎 ∈ ω → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) ) |
379 |
377 378
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) ) |
380 |
337 374 379
|
mpjaod |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) |
381 |
|
elelsuc |
⊢ ( 𝑎 ∈ suc suc 𝑛 → 𝑎 ∈ suc suc suc 𝑛 ) |
382 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 = ∅ ↔ 𝑎 = ∅ ) ) |
383 |
|
unieq |
⊢ ( 𝑏 = 𝑎 → ∪ 𝑏 = ∪ 𝑎 ) |
384 |
383
|
fveq2d |
⊢ ( 𝑏 = 𝑎 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ 𝑎 ) ) |
385 |
382 384
|
ifbieq2d |
⊢ ( 𝑏 = 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
386 |
|
fvex |
⊢ ( 𝑔 ‘ ∪ 𝑎 ) ∈ V |
387 |
101 386
|
ifex |
⊢ if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ∈ V |
388 |
385 297 387
|
fvmpt |
⊢ ( 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
389 |
381 388
|
syl |
⊢ ( 𝑎 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
390 |
389
|
adantl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
391 |
|
ordsucelsuc |
⊢ ( Ord suc suc 𝑛 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) ) |
392 |
304 391
|
syl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) ) |
393 |
392
|
biimpa |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → suc 𝑎 ∈ suc suc suc 𝑛 ) |
394 |
|
eqeq1 |
⊢ ( 𝑏 = suc 𝑎 → ( 𝑏 = ∅ ↔ suc 𝑎 = ∅ ) ) |
395 |
|
unieq |
⊢ ( 𝑏 = suc 𝑎 → ∪ 𝑏 = ∪ suc 𝑎 ) |
396 |
395
|
fveq2d |
⊢ ( 𝑏 = suc 𝑎 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
397 |
394 396
|
ifbieq2d |
⊢ ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑎 ) ) ) |
398 |
|
nsuceq0 |
⊢ suc 𝑎 ≠ ∅ |
399 |
398
|
neii |
⊢ ¬ suc 𝑎 = ∅ |
400 |
399
|
iffalsei |
⊢ if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑎 ) ) = ( 𝑔 ‘ ∪ suc 𝑎 ) |
401 |
397 400
|
eqtrdi |
⊢ ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
402 |
|
fvex |
⊢ ( 𝑔 ‘ ∪ suc 𝑎 ) ∈ V |
403 |
401 297 402
|
fvmpt |
⊢ ( suc 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
404 |
393 403
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
405 |
|
nnord |
⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) |
406 |
377 405
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → Ord 𝑎 ) |
407 |
|
ordunisuc |
⊢ ( Ord 𝑎 → ∪ suc 𝑎 = 𝑎 ) |
408 |
406 407
|
syl |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ∪ suc 𝑎 = 𝑎 ) |
409 |
408
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑎 ) = ( 𝑔 ‘ 𝑎 ) ) |
410 |
404 409
|
eqtrd |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ 𝑎 ) ) |
411 |
380 390 410
|
3brtr4d |
⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) |
412 |
411
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) |
413 |
264
|
sucex |
⊢ suc suc suc 𝑛 ∈ V |
414 |
413
|
mptex |
⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ∈ V |
415 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 Fn suc suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ) ) |
416 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) ) |
417 |
416
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) ) |
418 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) ) |
419 |
418
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ) |
420 |
417 419
|
anbi12d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ) ) |
421 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ 𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ) |
422 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ suc 𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) |
423 |
421 422
|
breq12d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) |
424 |
423
|
ralbidv |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) |
425 |
415 420 424
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) ) |
426 |
414 425
|
spcev |
⊢ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
427 |
299 309 328 412 426
|
syl121anc |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
428 |
427
|
3exp |
⊢ ( 𝑛 ∈ ω → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) ) |
429 |
428
|
exlimdv |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) ) |
430 |
429
|
impd |
⊢ ( 𝑛 ∈ ω → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
431 |
430
|
exlimdv |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
432 |
294 431
|
impbid |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
433 |
|
vex |
⊢ 𝑧 ∈ V |
434 |
433
|
brresi |
⊢ ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
435 |
434
|
anbi2i |
⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
436 |
435
|
exbii |
⊢ ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
437 |
432 436
|
bitrdi |
⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
438 |
215 437
|
vtoclg |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) |
439 |
438
|
impcom |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
440 |
439
|
adantrl |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
441 |
440
|
3adant3 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
442 |
175 203 441
|
3bitr4rd |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
443 |
442
|
alrimiv |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
444 |
443
|
3exp |
⊢ ( 𝑛 ∈ ω → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
445 |
444
|
a2d |
⊢ ( 𝑛 ∈ ω → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
446 |
27 68 82 96 164 445
|
finds |
⊢ ( 𝑁 ∈ ω → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
447 |
446
|
3impib |
⊢ ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
448 |
447
|
19.21bi |
⊢ ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |