Metamath Proof Explorer


Theorem ttrclselem2

Description: Lemma for ttrclse . Show that a suc N element long chain gives membership in the N -th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Hypothesis ttrclselem.1 𝐹 = rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) )
Assertion ttrclselem2 ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 ttrclselem.1 𝐹 = rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) )
2 suceq ( 𝑚 = ∅ → suc 𝑚 = suc ∅ )
3 df-1o 1o = suc ∅
4 2 3 eqtr4di ( 𝑚 = ∅ → suc 𝑚 = 1o )
5 suceq ( suc 𝑚 = 1o → suc suc 𝑚 = suc 1o )
6 4 5 syl ( 𝑚 = ∅ → suc suc 𝑚 = suc 1o )
7 6 fneq2d ( 𝑚 = ∅ → ( 𝑓 Fn suc suc 𝑚𝑓 Fn suc 1o ) )
8 4 fveqeq2d ( 𝑚 = ∅ → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) )
9 8 anbi2d ( 𝑚 = ∅ → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) )
10 df1o2 1o = { ∅ }
11 4 10 eqtrdi ( 𝑚 = ∅ → suc 𝑚 = { ∅ } )
12 11 raleqdv ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ { ∅ } ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
13 0ex ∅ ∈ V
14 fveq2 ( 𝑎 = ∅ → ( 𝑓𝑎 ) = ( 𝑓 ‘ ∅ ) )
15 suceq ( 𝑎 = ∅ → suc 𝑎 = suc ∅ )
16 15 3 eqtr4di ( 𝑎 = ∅ → suc 𝑎 = 1o )
17 16 fveq2d ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) )
18 14 17 breq12d ( 𝑎 = ∅ → ( ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) )
19 13 18 ralsn ( ∀ 𝑎 ∈ { ∅ } ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) )
20 12 19 bitrdi ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) )
21 7 9 20 3anbi123d ( 𝑚 = ∅ → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ) )
22 21 exbidv ( 𝑚 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ) )
23 fveq2 ( 𝑚 = ∅ → ( 𝐹𝑚 ) = ( 𝐹 ‘ ∅ ) )
24 23 eleq2d ( 𝑚 = ∅ → ( 𝑦 ∈ ( 𝐹𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) )
25 22 24 bibi12d ( 𝑚 = ∅ → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) )
26 25 albidv ( 𝑚 = ∅ → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) )
27 26 imbi2d ( 𝑚 = ∅ → ( ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) )
28 suceq ( 𝑚 = 𝑛 → suc 𝑚 = suc 𝑛 )
29 suceq ( suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛 )
30 28 29 syl ( 𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛 )
31 30 fneq2d ( 𝑚 = 𝑛 → ( 𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛 ) )
32 28 fveqeq2d ( 𝑚 = 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) )
33 32 anbi2d ( 𝑚 = 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ) )
34 28 raleqdv ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
35 fveq2 ( 𝑎 = 𝑐 → ( 𝑓𝑎 ) = ( 𝑓𝑐 ) )
36 suceq ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 )
37 36 fveq2d ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) )
38 35 37 breq12d ( 𝑎 = 𝑐 → ( ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) )
39 38 cbvralvw ( ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) )
40 34 39 bitrdi ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) )
41 31 33 40 3anbi123d ( 𝑚 = 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) )
42 41 exbidv ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) )
43 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn suc suc 𝑛𝑔 Fn suc suc 𝑛 ) )
44 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) )
45 44 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑦 ) )
46 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) )
47 46 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) )
48 45 47 anbi12d ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) )
49 fveq1 ( 𝑓 = 𝑔 → ( 𝑓𝑐 ) = ( 𝑔𝑐 ) )
50 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑐 ) )
51 49 50 breq12d ( 𝑓 = 𝑔 → ( ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) )
52 51 ralbidv ( 𝑓 = 𝑔 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) )
53 43 48 52 3anbi123d ( 𝑓 = 𝑔 → ( ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
54 53 cbvexvw ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) )
55 42 54 bitrdi ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
56 fveq2 ( 𝑚 = 𝑛 → ( 𝐹𝑚 ) = ( 𝐹𝑛 ) )
57 56 eleq2d ( 𝑚 = 𝑛 → ( 𝑦 ∈ ( 𝐹𝑚 ) ↔ 𝑦 ∈ ( 𝐹𝑛 ) ) )
58 55 57 bibi12d ( 𝑚 = 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹𝑛 ) ) ) )
59 58 albidv ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹𝑛 ) ) ) )
60 eqeq2 ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑧 ) )
61 60 anbi1d ( 𝑦 = 𝑧 → ( ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) )
62 61 3anbi2d ( 𝑦 = 𝑧 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
63 62 exbidv ( 𝑦 = 𝑧 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
64 eleq1 ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐹𝑛 ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) )
65 63 64 bibi12d ( 𝑦 = 𝑧 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹𝑛 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) )
66 65 cbvalvw ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹𝑛 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) )
67 59 66 bitrdi ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) )
68 67 imbi2d ( 𝑚 = 𝑛 → ( ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) ) )
69 suceq ( 𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛 )
70 suceq ( suc 𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 )
71 69 70 syl ( 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 )
72 71 fneq2d ( 𝑚 = suc 𝑛 → ( 𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑛 ) )
73 69 fveqeq2d ( 𝑚 = suc 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) )
74 73 anbi2d ( 𝑚 = suc 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) )
75 69 raleqdv ( 𝑚 = suc 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
76 72 74 75 3anbi123d ( 𝑚 = suc 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
77 76 exbidv ( 𝑚 = suc 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
78 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐹𝑚 ) = ( 𝐹 ‘ suc 𝑛 ) )
79 78 eleq2d ( 𝑚 = suc 𝑛 → ( 𝑦 ∈ ( 𝐹𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) )
80 77 79 bibi12d ( 𝑚 = suc 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) )
81 80 albidv ( 𝑚 = suc 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) )
82 81 imbi2d ( 𝑚 = suc 𝑛 → ( ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) )
83 suceq ( 𝑚 = 𝑁 → suc 𝑚 = suc 𝑁 )
84 suceq ( suc 𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁 )
85 83 84 syl ( 𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁 )
86 85 fneq2d ( 𝑚 = 𝑁 → ( 𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑁 ) )
87 83 fveqeq2d ( 𝑚 = 𝑁 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) )
88 87 anbi2d ( 𝑚 = 𝑁 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ) )
89 83 raleqdv ( 𝑚 = 𝑁 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
90 86 88 89 3anbi123d ( 𝑚 = 𝑁 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
91 90 exbidv ( 𝑚 = 𝑁 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
92 fveq2 ( 𝑚 = 𝑁 → ( 𝐹𝑚 ) = ( 𝐹𝑁 ) )
93 92 eleq2d ( 𝑚 = 𝑁 → ( 𝑦 ∈ ( 𝐹𝑚 ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) )
94 91 93 bibi12d ( 𝑚 = 𝑁 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) ) )
95 94 albidv ( 𝑚 = 𝑁 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) ) )
96 95 imbi2d ( 𝑚 = 𝑁 → ( ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) ) ) )
97 eqeq2 ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ 1o ) = 𝑥 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) )
98 97 anbi2d ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) )
99 98 anbi2d ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) )
100 99 exbidv ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) )
101 vex 𝑦 ∈ V
102 vex 𝑥 ∈ V
103 101 102 ifex if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ∈ V
104 eqid ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) )
105 103 104 fnmpti ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o
106 equid 𝑦 = 𝑦
107 equid 𝑥 = 𝑥
108 106 107 pm3.2i ( 𝑦 = 𝑦𝑥 = 𝑥 )
109 1oex 1o ∈ V
110 109 sucex suc 1o ∈ V
111 110 mptex ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ∈ V
112 fneq1 ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 Fn suc 1o ↔ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ) )
113 fveq1 ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) )
114 1on 1o ∈ On
115 114 onordi Ord 1o
116 0elsuc ( Ord 1o → ∅ ∈ suc 1o )
117 iftrue ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑦 )
118 117 104 101 fvmpt ( ∅ ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦 )
119 115 116 118 mp2b ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦
120 113 119 eqtrdi ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 )
121 120 eqeq1d ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦𝑦 = 𝑦 ) )
122 fveq1 ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) )
123 109 sucid 1o ∈ suc 1o
124 eqeq1 ( 𝑏 = 1o → ( 𝑏 = ∅ ↔ 1o = ∅ ) )
125 124 ifbid ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = if ( 1o = ∅ , 𝑦 , 𝑥 ) )
126 1n0 1o ≠ ∅
127 126 neii ¬ 1o = ∅
128 127 iffalsei if ( 1o = ∅ , 𝑦 , 𝑥 ) = 𝑥
129 125 128 eqtrdi ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑥 )
130 129 104 102 fvmpt ( 1o ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥 )
131 123 130 ax-mp ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥
132 122 131 eqtrdi ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = 𝑥 )
133 132 eqeq1d ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ 1o ) = 𝑥𝑥 = 𝑥 ) )
134 121 133 anbi12d ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( 𝑦 = 𝑦𝑥 = 𝑥 ) ) )
135 112 134 anbi12d ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦𝑥 = 𝑥 ) ) ) )
136 111 135 spcev ( ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦𝑥 = 𝑥 ) ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) )
137 105 108 136 mp2an 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) )
138 100 137 vtoclg ( 𝑋𝐴 → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) )
139 138 adantl ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) )
140 139 biantrurd ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ( 𝑦𝐴𝑦 𝑅 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) ) )
141 101 elpred ( 𝑋𝐴 → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) )
142 141 adantl ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) )
143 brres ( 𝑋𝐴 → ( 𝑦 ( 𝑅𝐴 ) 𝑋 ↔ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) )
144 143 adantl ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( 𝑦 ( 𝑅𝐴 ) 𝑋 ↔ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) )
145 144 anbi2d ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑋 ) ) ) )
146 140 142 145 3bitr4rd ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
147 df-3an ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) )
148 breq12 ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
149 148 adantl ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
150 149 pm5.32i ( ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
151 147 150 bitri ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
152 151 exbii ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
153 19.41v ( ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
154 152 153 bitri ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) )
155 154 a1i ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑋 ) ) )
156 1 fveq1i ( 𝐹 ‘ ∅ ) = ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ )
157 setlikespec ( ( 𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )
158 157 ancoms ( ( 𝑅 Se 𝐴𝑋𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )
159 rdg0g ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
160 158 159 syl ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
161 156 160 eqtrid ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( 𝐹 ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
162 161 eleq2d ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( 𝑦 ∈ ( 𝐹 ‘ ∅ ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
163 146 155 162 3bitr4d ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) )
164 163 alrimiv ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) )
165 eliun ( 𝑦 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐹𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
166 df-rex ( ∃ 𝑧 ∈ ( 𝐹𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
167 165 166 bitri ( 𝑦 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
168 101 elpred ( 𝑧 ∈ V → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) )
169 168 elv ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦𝐴𝑦 𝑅 𝑧 ) )
170 169 anbi2i ( ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) )
171 anbi1 ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
172 170 171 bitr4id ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) → ( ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
173 172 alexbii ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
174 173 3ad2ant3 ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
175 167 174 bitrid ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( 𝑦 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
176 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
177 fvex ( 𝐹𝑛 ) ∈ V
178 1 ttrclselem1 ( 𝑛 ∈ ω → ( 𝐹𝑛 ) ⊆ 𝐴 )
179 178 adantr ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ( 𝐹𝑛 ) ⊆ 𝐴 )
180 dfse3 ( 𝑅 Se 𝐴 ↔ ∀ 𝑧𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
181 180 biimpi ( 𝑅 Se 𝐴 → ∀ 𝑧𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
182 181 adantl ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
183 ssralv ( ( 𝐹𝑛 ) ⊆ 𝐴 → ( ∀ 𝑧𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V → ∀ 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) )
184 179 182 183 sylc ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
185 184 adantrr ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ) → ∀ 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
186 iunexg ( ( ( 𝐹𝑛 ) ∈ V ∧ ∀ 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
187 177 185 186 sylancr ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ) → 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
188 nfcv 𝑏 Pred ( 𝑅 , 𝐴 , 𝑋 )
189 nfcv 𝑏 𝑛
190 nfmpt1 𝑏 ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) )
191 190 188 nfrdg 𝑏 rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) )
192 1 191 nfcxfr 𝑏 𝐹
193 192 189 nffv 𝑏 ( 𝐹𝑛 )
194 nfcv 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 )
195 193 194 nfiun 𝑏 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 )
196 predeq3 ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) )
197 196 cbviunv 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = 𝑧𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 )
198 iuneq1 ( 𝑏 = ( 𝐹𝑛 ) → 𝑧𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) = 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
199 197 198 eqtrid ( 𝑏 = ( 𝐹𝑛 ) → 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
200 188 189 195 1 199 rdgsucmptf ( ( 𝑛 ∈ On ∧ 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
201 176 187 200 syl2an2r ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ) → ( 𝐹 ‘ suc 𝑛 ) = 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
202 201 3adant3 ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( 𝐹 ‘ suc 𝑛 ) = 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
203 202 eleq2d ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ↔ 𝑦 𝑧 ∈ ( 𝐹𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
204 eqeq2 ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) )
205 204 anbi2d ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) )
206 205 3anbi2d ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
207 206 exbidv ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
208 eqeq2 ( 𝑥 = 𝑋 → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) )
209 208 anbi2d ( 𝑥 = 𝑋 → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) )
210 209 3anbi2d ( 𝑥 = 𝑋 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
211 210 exbidv ( 𝑥 = 𝑋 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
212 211 anbi1d ( 𝑥 = 𝑋 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
213 212 exbidv ( 𝑥 = 𝑋 → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
214 207 213 bibi12d ( 𝑥 = 𝑋 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) ) )
215 214 imbi2d ( 𝑥 = 𝑋 → ( ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) ) ↔ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) ) ) )
216 fvex ( 𝑓 ‘ suc 𝑏 ) ∈ V
217 eqid ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) )
218 216 217 fnmpti ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛
219 218 a1i ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 )
220 peano2 ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
221 220 adantr ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → suc 𝑛 ∈ ω )
222 nnord ( suc 𝑛 ∈ ω → Ord suc 𝑛 )
223 221 222 syl ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → Ord suc 𝑛 )
224 0elsuc ( Ord suc 𝑛 → ∅ ∈ suc suc 𝑛 )
225 223 224 syl ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ suc suc 𝑛 )
226 suceq ( 𝑏 = ∅ → suc 𝑏 = suc ∅ )
227 226 fveq2d ( 𝑏 = ∅ → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc ∅ ) )
228 fvex ( 𝑓 ‘ suc ∅ ) ∈ V
229 227 217 228 fvmpt ( ∅ ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) )
230 225 229 syl ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) )
231 vex 𝑛 ∈ V
232 231 sucex suc 𝑛 ∈ V
233 232 sucid suc 𝑛 ∈ suc suc 𝑛
234 suceq ( 𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛 )
235 234 fveq2d ( 𝑏 = suc 𝑛 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑛 ) )
236 fvex ( 𝑓 ‘ suc suc 𝑛 ) ∈ V
237 235 217 236 fvmpt ( suc 𝑛 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) )
238 233 237 mp1i ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) )
239 simpr2r ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 )
240 238 239 eqtrd ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 )
241 fveq2 ( 𝑎 = suc 𝑐 → ( 𝑓𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) )
242 suceq ( 𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐 )
243 242 fveq2d ( 𝑎 = suc 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc suc 𝑐 ) )
244 241 243 breq12d ( 𝑎 = suc 𝑐 → ( ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ suc 𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) ) )
245 simplr3 ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) )
246 ordsucelsuc ( Ord suc 𝑛 → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) )
247 223 246 syl ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) )
248 247 biimpa ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → suc 𝑐 ∈ suc suc 𝑛 )
249 244 245 248 rspcdva ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( 𝑓 ‘ suc 𝑐 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) )
250 elelsuc ( 𝑐 ∈ suc 𝑛𝑐 ∈ suc suc 𝑛 )
251 suceq ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 )
252 251 fveq2d ( 𝑏 = 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc 𝑐 ) )
253 fvex ( 𝑓 ‘ suc 𝑐 ) ∈ V
254 252 217 253 fvmpt ( 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) )
255 250 254 syl ( 𝑐 ∈ suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) )
256 255 adantl ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) )
257 suceq ( 𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐 )
258 257 fveq2d ( 𝑏 = suc 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑐 ) )
259 fvex ( 𝑓 ‘ suc suc 𝑐 ) ∈ V
260 258 217 259 fvmpt ( suc 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) )
261 248 260 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) )
262 249 256 261 3brtr4d ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) )
263 262 ralrimiva ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) )
264 232 sucex suc suc 𝑛 ∈ V
265 264 mptex ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ∈ V
266 fneq1 ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 Fn suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ) )
267 fveq1 ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) )
268 267 eqeq1d ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) )
269 fveq1 ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑛 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) )
270 269 eqeq1d ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) )
271 268 270 anbi12d ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ) )
272 fveq1 ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) )
273 fveq1 ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) )
274 272 273 breq12d ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) )
275 274 ralbidv ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) )
276 266 271 275 3anbi123d ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) )
277 265 276 spcev ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) )
278 219 230 240 263 277 syl121anc ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) )
279 simpr2l ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 )
280 15 fveq2d ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc ∅ ) )
281 14 280 breq12d ( 𝑎 = ∅ → ( ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) ) )
282 simpr3 ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) )
283 281 282 225 rspcdva ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) )
284 279 283 eqbrtrrd ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑦 ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) )
285 eqeq2 ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 ‘ ∅ ) = 𝑧 ↔ ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) )
286 285 anbi1d ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ) )
287 286 3anbi2d ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
288 287 exbidv ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) )
289 breq2 ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( 𝑦 ( 𝑅𝐴 ) 𝑧𝑦 ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) ) )
290 288 289 anbi12d ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) )
291 228 290 spcev ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) ( 𝑓 ‘ suc ∅ ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) )
292 278 284 291 syl2anc ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) )
293 292 ex ( 𝑛 ∈ ω → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ) )
294 293 exlimdv ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ) )
295 fvex ( 𝑔 𝑏 ) ∈ V
296 101 295 ifex if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ∈ V
297 eqid ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) )
298 296 297 fnmpti ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) Fn suc suc suc 𝑛
299 298 a1i ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) Fn suc suc suc 𝑛 )
300 peano2 ( suc 𝑛 ∈ ω → suc suc 𝑛 ∈ ω )
301 220 300 syl ( 𝑛 ∈ ω → suc suc 𝑛 ∈ ω )
302 301 3ad2ant1 ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → suc suc 𝑛 ∈ ω )
303 nnord ( suc suc 𝑛 ∈ ω → Ord suc suc 𝑛 )
304 302 303 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → Ord suc suc 𝑛 )
305 0elsuc ( Ord suc suc 𝑛 → ∅ ∈ suc suc suc 𝑛 )
306 304 305 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∅ ∈ suc suc suc 𝑛 )
307 iftrue ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = 𝑦 )
308 307 297 101 fvmpt ( ∅ ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 )
309 306 308 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 )
310 264 sucid suc suc 𝑛 ∈ suc suc suc 𝑛
311 eqeq1 ( 𝑏 = suc suc 𝑛 → ( 𝑏 = ∅ ↔ suc suc 𝑛 = ∅ ) )
312 unieq ( 𝑏 = suc suc 𝑛 𝑏 = suc suc 𝑛 )
313 312 fveq2d ( 𝑏 = suc suc 𝑛 → ( 𝑔 𝑏 ) = ( 𝑔 suc suc 𝑛 ) )
314 311 313 ifbieq2d ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 suc suc 𝑛 ) ) )
315 nsuceq0 suc suc 𝑛 ≠ ∅
316 315 neii ¬ suc suc 𝑛 = ∅
317 316 iffalsei if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 suc suc 𝑛 ) ) = ( 𝑔 suc suc 𝑛 )
318 314 317 eqtrdi ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = ( 𝑔 suc suc 𝑛 ) )
319 fvex ( 𝑔 suc suc 𝑛 ) ∈ V
320 318 297 319 fvmpt ( suc suc 𝑛 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 suc suc 𝑛 ) )
321 310 320 mp1i ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 suc suc 𝑛 ) )
322 220 3ad2ant1 ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → suc 𝑛 ∈ ω )
323 322 222 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → Ord suc 𝑛 )
324 ordunisuc ( Ord suc 𝑛 suc suc 𝑛 = suc 𝑛 )
325 323 324 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → suc suc 𝑛 = suc 𝑛 )
326 325 fveq2d ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑔 suc suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) )
327 simp22r ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑔 ‘ suc 𝑛 ) = 𝑥 )
328 321 326 327 3eqtrd ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 )
329 simpl3 ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → 𝑦 ( 𝑅𝐴 ) 𝑧 )
330 iftrue ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) = 𝑦 )
331 330 adantl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) = 𝑦 )
332 fveq2 ( 𝑎 = ∅ → ( 𝑔𝑎 ) = ( 𝑔 ‘ ∅ ) )
333 simp22l ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑔 ‘ ∅ ) = 𝑧 )
334 332 333 sylan9eqr ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → ( 𝑔𝑎 ) = 𝑧 )
335 329 331 334 3brtr4d ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) )
336 335 ex ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) )
337 336 adantr ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) )
338 ordsucelsuc ( Ord suc 𝑛 → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) )
339 323 338 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) )
340 elnn ( ( 𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω ) → 𝑏 ∈ ω )
341 322 340 sylan2 ( ( 𝑏 ∈ suc 𝑛 ∧ ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ) → 𝑏 ∈ ω )
342 341 ancoms ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → 𝑏 ∈ ω )
343 nnord ( 𝑏 ∈ ω → Ord 𝑏 )
344 342 343 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → Ord 𝑏 )
345 ordunisuc ( Ord 𝑏 suc 𝑏 = 𝑏 )
346 344 345 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → suc 𝑏 = 𝑏 )
347 346 fveq2d ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 suc 𝑏 ) = ( 𝑔𝑏 ) )
348 simp23 ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) )
349 fveq2 ( 𝑐 = 𝑏 → ( 𝑔𝑐 ) = ( 𝑔𝑏 ) )
350 suceq ( 𝑐 = 𝑏 → suc 𝑐 = suc 𝑏 )
351 350 fveq2d ( 𝑐 = 𝑏 → ( 𝑔 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑏 ) )
352 349 351 breq12d ( 𝑐 = 𝑏 → ( ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( 𝑔𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) )
353 352 rspcv ( 𝑏 ∈ suc 𝑛 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) → ( 𝑔𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) )
354 348 353 mpan9 ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) )
355 347 354 eqbrtrd ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) )
356 355 ex ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 → ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) )
357 339 356 sylbird ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( suc 𝑏 ∈ suc suc 𝑛 → ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) )
358 357 imp ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) )
359 eleq1 ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) )
360 359 anbi2d ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) ↔ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) ) )
361 eqeq1 ( 𝑎 = suc 𝑏 → ( 𝑎 = ∅ ↔ suc 𝑏 = ∅ ) )
362 unieq ( 𝑎 = suc 𝑏 𝑎 = suc 𝑏 )
363 362 fveq2d ( 𝑎 = suc 𝑏 → ( 𝑔 𝑎 ) = ( 𝑔 suc 𝑏 ) )
364 361 363 ifbieq2d ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) = if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 suc 𝑏 ) ) )
365 nsuceq0 suc 𝑏 ≠ ∅
366 365 neii ¬ suc 𝑏 = ∅
367 366 iffalsei if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 suc 𝑏 ) ) = ( 𝑔 suc 𝑏 )
368 364 367 eqtrdi ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) = ( 𝑔 suc 𝑏 ) )
369 fveq2 ( 𝑎 = suc 𝑏 → ( 𝑔𝑎 ) = ( 𝑔 ‘ suc 𝑏 ) )
370 368 369 breq12d ( 𝑎 = suc 𝑏 → ( if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ↔ ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) )
371 360 370 imbi12d ( 𝑎 = suc 𝑏 → ( ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) ↔ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 suc 𝑏 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) )
372 358 371 mpbiri ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) )
373 372 com12 ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) )
374 373 rexlimdvw ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) ) )
375 elnn ( ( 𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω ) → 𝑎 ∈ ω )
376 375 ancoms ( ( suc suc 𝑛 ∈ ω ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω )
377 302 376 sylan ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω )
378 nn0suc ( 𝑎 ∈ ω → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) )
379 377 378 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) )
380 337 374 379 mpjaod ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ( 𝑅𝐴 ) ( 𝑔𝑎 ) )
381 elelsuc ( 𝑎 ∈ suc suc 𝑛𝑎 ∈ suc suc suc 𝑛 )
382 eqeq1 ( 𝑏 = 𝑎 → ( 𝑏 = ∅ ↔ 𝑎 = ∅ ) )
383 unieq ( 𝑏 = 𝑎 𝑏 = 𝑎 )
384 383 fveq2d ( 𝑏 = 𝑎 → ( 𝑔 𝑏 ) = ( 𝑔 𝑎 ) )
385 382 384 ifbieq2d ( 𝑏 = 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) )
386 fvex ( 𝑔 𝑎 ) ∈ V
387 101 386 ifex if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) ∈ V
388 385 297 387 fvmpt ( 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) )
389 381 388 syl ( 𝑎 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) )
390 389 adantl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 𝑎 ) ) )
391 ordsucelsuc ( Ord suc suc 𝑛 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) )
392 304 391 syl ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) )
393 392 biimpa ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → suc 𝑎 ∈ suc suc suc 𝑛 )
394 eqeq1 ( 𝑏 = suc 𝑎 → ( 𝑏 = ∅ ↔ suc 𝑎 = ∅ ) )
395 unieq ( 𝑏 = suc 𝑎 𝑏 = suc 𝑎 )
396 395 fveq2d ( 𝑏 = suc 𝑎 → ( 𝑔 𝑏 ) = ( 𝑔 suc 𝑎 ) )
397 394 396 ifbieq2d ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 suc 𝑎 ) ) )
398 nsuceq0 suc 𝑎 ≠ ∅
399 398 neii ¬ suc 𝑎 = ∅
400 399 iffalsei if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 suc 𝑎 ) ) = ( 𝑔 suc 𝑎 )
401 397 400 eqtrdi ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) = ( 𝑔 suc 𝑎 ) )
402 fvex ( 𝑔 suc 𝑎 ) ∈ V
403 401 297 402 fvmpt ( suc 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 suc 𝑎 ) )
404 393 403 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 suc 𝑎 ) )
405 nnord ( 𝑎 ∈ ω → Ord 𝑎 )
406 377 405 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → Ord 𝑎 )
407 ordunisuc ( Ord 𝑎 suc 𝑎 = 𝑎 )
408 406 407 syl ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → suc 𝑎 = 𝑎 )
409 408 fveq2d ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑔 suc 𝑎 ) = ( 𝑔𝑎 ) )
410 404 409 eqtrd ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔𝑎 ) )
411 380 390 410 3brtr4d ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) )
412 411 ralrimiva ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) )
413 264 sucex suc suc suc 𝑛 ∈ V
414 413 mptex ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ∈ V
415 fneq1 ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( 𝑓 Fn suc suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) Fn suc suc suc 𝑛 ) )
416 fveq1 ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) )
417 416 eqeq1d ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) )
418 fveq1 ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) )
419 418 eqeq1d ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) )
420 417 419 anbi12d ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ) )
421 fveq1 ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( 𝑓𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) )
422 fveq1 ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( 𝑓 ‘ suc 𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) )
423 421 422 breq12d ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) ) )
424 423 ralbidv ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) ) )
425 415 420 424 3anbi123d ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) )
426 414 425 spcev ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 𝑏 ) ) ) ‘ suc 𝑎 ) ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
427 299 309 328 412 426 syl121anc ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
428 427 3exp ( 𝑛 ∈ ω → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) )
429 428 exlimdv ( 𝑛 ∈ ω → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) )
430 429 impd ( 𝑛 ∈ ω → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
431 430 exlimdv ( 𝑛 ∈ ω → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) )
432 294 431 impbid ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ) )
433 vex 𝑧 ∈ V
434 433 brresi ( 𝑦 ( 𝑅𝐴 ) 𝑧 ↔ ( 𝑦𝐴𝑦 𝑅 𝑧 ) )
435 434 anbi2i ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) )
436 435 exbii ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅𝐴 ) 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) )
437 432 436 bitrdi ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
438 215 437 vtoclg ( 𝑋𝐴 → ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) ) )
439 438 impcom ( ( 𝑛 ∈ ω ∧ 𝑋𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
440 439 adantrl ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
441 440 3adant3 ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦𝐴𝑦 𝑅 𝑧 ) ) ) )
442 175 203 441 3bitr4rd ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) )
443 442 alrimiv ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑋𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) )
444 443 3exp ( 𝑛 ∈ ω → ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) )
445 444 a2d ( 𝑛 ∈ ω → ( ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔𝑐 ) ( 𝑅𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹𝑛 ) ) ) → ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) )
446 27 68 82 96 164 445 finds ( 𝑁 ∈ ω → ( ( 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) ) )
447 446 3impib ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) )
448 447 19.21bi ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹𝑁 ) ) )