Metamath Proof Explorer


Theorem ttrclse

Description: If R is set-like over A , then the transitive closure of the restriction of R to A is set-like over A .

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Assertion ttrclse ( 𝑅 Se 𝐴 → t++ ( 𝑅𝐴 ) Se 𝐴 )

Proof

Step Hyp Ref Expression
1 brttrcl2 ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) )
2 eqid rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) = rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) )
3 2 ttrclselem2 ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴𝑥𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
4 3 3expb ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴𝑥𝐴 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
5 4 ancoms ( ( ( 𝑅 Se 𝐴𝑥𝐴 ) ∧ 𝑛 ∈ ω ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
6 5 rexbidva ( ( 𝑅 Se 𝐴𝑥𝐴 ) → ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓𝑎 ) ( 𝑅𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ω 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
7 1 6 bitrid ( ( 𝑅 Se 𝐴𝑥𝐴 ) → ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥 ↔ ∃ 𝑛 ∈ ω 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
8 vex 𝑦 ∈ V
9 8 elpred ( 𝑥 ∈ V → ( 𝑦 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ↔ ( 𝑦𝐴𝑦 t++ ( 𝑅𝐴 ) 𝑥 ) ) )
10 9 elv ( 𝑦 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ↔ ( 𝑦𝐴𝑦 t++ ( 𝑅𝐴 ) 𝑥 ) )
11 resdmss dom ( 𝑅𝐴 ) ⊆ 𝐴
12 vex 𝑥 ∈ V
13 8 12 breldm ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥𝑦 ∈ dom t++ ( 𝑅𝐴 ) )
14 dmttrcl dom t++ ( 𝑅𝐴 ) = dom ( 𝑅𝐴 )
15 13 14 eleqtrdi ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥𝑦 ∈ dom ( 𝑅𝐴 ) )
16 11 15 sselid ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥𝑦𝐴 )
17 16 pm4.71ri ( 𝑦 t++ ( 𝑅𝐴 ) 𝑥 ↔ ( 𝑦𝐴𝑦 t++ ( 𝑅𝐴 ) 𝑥 ) )
18 10 17 bitr4i ( 𝑦 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ↔ 𝑦 t++ ( 𝑅𝐴 ) 𝑥 )
19 rdgfun Fun rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) )
20 eluniima ( Fun rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) → ( 𝑦 ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ↔ ∃ 𝑛 ∈ ω 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) ) )
21 19 20 ax-mp ( 𝑦 ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ↔ ∃ 𝑛 ∈ ω 𝑦 ∈ ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ‘ 𝑛 ) )
22 7 18 21 3bitr4g ( ( 𝑅 Se 𝐴𝑥𝐴 ) → ( 𝑦 ∈ Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ↔ 𝑦 ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ) )
23 22 eqrdv ( ( 𝑅 Se 𝐴𝑥𝐴 ) → Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) = ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) )
24 omex ω ∈ V
25 24 funimaex ( Fun rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) → ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ∈ V )
26 19 25 ax-mp ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ∈ V
27 26 uniex ( rec ( ( 𝑏 ∈ V ↦ 𝑤𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑥 ) ) “ ω ) ∈ V
28 23 27 eqeltrdi ( ( 𝑅 Se 𝐴𝑥𝐴 ) → Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ∈ V )
29 28 ralrimiva ( 𝑅 Se 𝐴 → ∀ 𝑥𝐴 Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ∈ V )
30 dfse3 ( t++ ( 𝑅𝐴 ) Se 𝐴 ↔ ∀ 𝑥𝐴 Pred ( t++ ( 𝑅𝐴 ) , 𝐴 , 𝑥 ) ∈ V )
31 29 30 sylibr ( 𝑅 Se 𝐴 → t++ ( 𝑅𝐴 ) Se 𝐴 )