Description: If R is set-like over A , then the transitive closure of the restriction of R to A is set-like over A .
This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ttrclse | Could not format assertion : No typesetting found for |- ( R Se A -> t++ ( R |` A ) Se A ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brttrcl2 | Could not format ( y t++ ( R |` A ) x <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = x ) /\ A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) : No typesetting found for |- ( y t++ ( R |` A ) x <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = x ) /\ A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) with typecode |- | |
2 | eqid | ||
3 | 2 | ttrclselem2 | |
4 | 3 | 3expb | |
5 | 4 | ancoms | |
6 | 5 | rexbidva | |
7 | 1 6 | bitrid | Could not format ( ( R Se A /\ x e. A ) -> ( y t++ ( R |` A ) x <-> E. n e. _om y e. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) ` n ) ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> ( y t++ ( R |` A ) x <-> E. n e. _om y e. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) ` n ) ) ) with typecode |- |
8 | vex | ||
9 | 8 | elpred | Could not format ( x e. _V -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) ) : No typesetting found for |- ( x e. _V -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) ) with typecode |- |
10 | 9 | elv | Could not format ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) : No typesetting found for |- ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) with typecode |- |
11 | resdmss | ||
12 | vex | ||
13 | 8 12 | breldm | Could not format ( y t++ ( R |` A ) x -> y e. dom t++ ( R |` A ) ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. dom t++ ( R |` A ) ) with typecode |- |
14 | dmttrcl | Could not format dom t++ ( R |` A ) = dom ( R |` A ) : No typesetting found for |- dom t++ ( R |` A ) = dom ( R |` A ) with typecode |- | |
15 | 13 14 | eleqtrdi | Could not format ( y t++ ( R |` A ) x -> y e. dom ( R |` A ) ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. dom ( R |` A ) ) with typecode |- |
16 | 11 15 | sselid | Could not format ( y t++ ( R |` A ) x -> y e. A ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. A ) with typecode |- |
17 | 16 | pm4.71ri | Could not format ( y t++ ( R |` A ) x <-> ( y e. A /\ y t++ ( R |` A ) x ) ) : No typesetting found for |- ( y t++ ( R |` A ) x <-> ( y e. A /\ y t++ ( R |` A ) x ) ) with typecode |- |
18 | 10 17 | bitr4i | Could not format ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y t++ ( R |` A ) x ) : No typesetting found for |- ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y t++ ( R |` A ) x ) with typecode |- |
19 | rdgfun | ||
20 | eluniima | ||
21 | 19 20 | ax-mp | |
22 | 7 18 21 | 3bitr4g | Could not format ( ( R Se A /\ x e. A ) -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y e. U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y e. U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) ) with typecode |- |
23 | 22 | eqrdv | Could not format ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) = U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) = U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) with typecode |- |
24 | omex | ||
25 | 24 | funimaex | |
26 | 19 25 | ax-mp | |
27 | 26 | uniex | |
28 | 23 27 | eqeltrdi | Could not format ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |- |
29 | 28 | ralrimiva | Could not format ( R Se A -> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( R Se A -> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |- |
30 | dfse3 | Could not format ( t++ ( R |` A ) Se A <-> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( t++ ( R |` A ) Se A <-> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |- | |
31 | 29 30 | sylibr | Could not format ( R Se A -> t++ ( R |` A ) Se A ) : No typesetting found for |- ( R Se A -> t++ ( R |` A ) Se A ) with typecode |- |