Step |
Hyp |
Ref |
Expression |
1 |
|
df-ttrcl |
⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
2 |
1
|
dmeqi |
⊢ dom t++ 𝑅 = dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
3 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
4 |
2 3
|
eqtri |
⊢ dom t++ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
5 |
|
simpr2l |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) |
6 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) |
7 |
|
suceq |
⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) |
8 |
|
df-1o |
⊢ 1o = suc ∅ |
9 |
7 8
|
eqtr4di |
⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
10 |
9
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
11 |
6 10
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
12 |
|
simpr3 |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
13 |
|
eldif |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) ) |
14 |
|
0ex |
⊢ ∅ ∈ V |
15 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
16 |
|
ordelsuc |
⊢ ( ( ∅ ∈ V ∧ Ord 𝑛 ) → ( ∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝑛 ∈ ω → ( ∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) ) |
18 |
8
|
sseq1i |
⊢ ( 1o ⊆ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) |
19 |
|
1on |
⊢ 1o ∈ On |
20 |
19
|
onordi |
⊢ Ord 1o |
21 |
|
ordtri1 |
⊢ ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
22 |
20 15 21
|
sylancr |
⊢ ( 𝑛 ∈ ω → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
23 |
18 22
|
bitr3id |
⊢ ( 𝑛 ∈ ω → ( suc ∅ ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
24 |
17 23
|
bitr2d |
⊢ ( 𝑛 ∈ ω → ( ¬ 𝑛 ∈ 1o ↔ ∅ ∈ 𝑛 ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → ∅ ∈ 𝑛 ) |
26 |
13 25
|
sylbi |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ∅ ∈ 𝑛 ) |
27 |
26
|
adantr |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ 𝑛 ) |
28 |
11 12 27
|
rspcdva |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
29 |
5 28
|
eqbrtrrd |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑥 𝑅 ( 𝑓 ‘ 1o ) ) |
30 |
|
vex |
⊢ 𝑥 ∈ V |
31 |
|
fvex |
⊢ ( 𝑓 ‘ 1o ) ∈ V |
32 |
30 31
|
breldm |
⊢ ( 𝑥 𝑅 ( 𝑓 ‘ 1o ) → 𝑥 ∈ dom 𝑅 ) |
33 |
29 32
|
syl |
⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑥 ∈ dom 𝑅 ) |
34 |
33
|
ex |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) ) |
35 |
34
|
exlimdv |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) ) |
36 |
35
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) |
37 |
36
|
exlimiv |
⊢ ( ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) |
38 |
37
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ⊆ dom 𝑅 |
39 |
4 38
|
eqsstri |
⊢ dom t++ 𝑅 ⊆ dom 𝑅 |
40 |
|
dmresv |
⊢ dom ( 𝑅 ↾ V ) = dom 𝑅 |
41 |
|
relres |
⊢ Rel ( 𝑅 ↾ V ) |
42 |
|
ssttrcl |
⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) |
43 |
41 42
|
ax-mp |
⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
44 |
|
ttrclresv |
⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 |
45 |
43 44
|
sseqtri |
⊢ ( 𝑅 ↾ V ) ⊆ t++ 𝑅 |
46 |
|
dmss |
⊢ ( ( 𝑅 ↾ V ) ⊆ t++ 𝑅 → dom ( 𝑅 ↾ V ) ⊆ dom t++ 𝑅 ) |
47 |
45 46
|
ax-mp |
⊢ dom ( 𝑅 ↾ V ) ⊆ dom t++ 𝑅 |
48 |
40 47
|
eqsstrri |
⊢ dom 𝑅 ⊆ dom t++ 𝑅 |
49 |
39 48
|
eqssi |
⊢ dom t++ 𝑅 = dom 𝑅 |