Step |
Hyp |
Ref |
Expression |
1 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
2 |
1
|
dmeqi |
|- dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
3 |
|
dmopab |
|- dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
4 |
2 3
|
eqtri |
|- dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
5 |
|
simpr2l |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
6 |
|
fveq2 |
|- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
7 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
8 |
|
df-1o |
|- 1o = suc (/) |
9 |
7 8
|
eqtr4di |
|- ( a = (/) -> suc a = 1o ) |
10 |
9
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
11 |
6 10
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
12 |
|
simpr3 |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
13 |
|
eldif |
|- ( n e. ( _om \ 1o ) <-> ( n e. _om /\ -. n e. 1o ) ) |
14 |
|
0ex |
|- (/) e. _V |
15 |
|
nnord |
|- ( n e. _om -> Ord n ) |
16 |
|
ordelsuc |
|- ( ( (/) e. _V /\ Ord n ) -> ( (/) e. n <-> suc (/) C_ n ) ) |
17 |
14 15 16
|
sylancr |
|- ( n e. _om -> ( (/) e. n <-> suc (/) C_ n ) ) |
18 |
8
|
sseq1i |
|- ( 1o C_ n <-> suc (/) C_ n ) |
19 |
|
1on |
|- 1o e. On |
20 |
19
|
onordi |
|- Ord 1o |
21 |
|
ordtri1 |
|- ( ( Ord 1o /\ Ord n ) -> ( 1o C_ n <-> -. n e. 1o ) ) |
22 |
20 15 21
|
sylancr |
|- ( n e. _om -> ( 1o C_ n <-> -. n e. 1o ) ) |
23 |
18 22
|
bitr3id |
|- ( n e. _om -> ( suc (/) C_ n <-> -. n e. 1o ) ) |
24 |
17 23
|
bitr2d |
|- ( n e. _om -> ( -. n e. 1o <-> (/) e. n ) ) |
25 |
24
|
biimpa |
|- ( ( n e. _om /\ -. n e. 1o ) -> (/) e. n ) |
26 |
13 25
|
sylbi |
|- ( n e. ( _om \ 1o ) -> (/) e. n ) |
27 |
26
|
adantr |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. n ) |
28 |
11 12 27
|
rspcdva |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) R ( f ` 1o ) ) |
29 |
5 28
|
eqbrtrrd |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x R ( f ` 1o ) ) |
30 |
|
vex |
|- x e. _V |
31 |
|
fvex |
|- ( f ` 1o ) e. _V |
32 |
30 31
|
breldm |
|- ( x R ( f ` 1o ) -> x e. dom R ) |
33 |
29 32
|
syl |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x e. dom R ) |
34 |
33
|
ex |
|- ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
35 |
34
|
exlimdv |
|- ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
36 |
35
|
rexlimiv |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
37 |
36
|
exlimiv |
|- ( E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
38 |
37
|
abssi |
|- { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ dom R |
39 |
4 38
|
eqsstri |
|- dom t++ R C_ dom R |
40 |
|
dmresv |
|- dom ( R |` _V ) = dom R |
41 |
|
relres |
|- Rel ( R |` _V ) |
42 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
43 |
41 42
|
ax-mp |
|- ( R |` _V ) C_ t++ ( R |` _V ) |
44 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
45 |
43 44
|
sseqtri |
|- ( R |` _V ) C_ t++ R |
46 |
|
dmss |
|- ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) |
47 |
45 46
|
ax-mp |
|- dom ( R |` _V ) C_ dom t++ R |
48 |
40 47
|
eqsstrri |
|- dom R C_ dom t++ R |
49 |
39 48
|
eqssi |
|- dom t++ R = dom R |