| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ttrcl |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 2 |
1
|
dmeqi |
|- dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 3 |
|
dmopab |
|- dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 4 |
2 3
|
eqtri |
|- dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 5 |
|
simpr2l |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
| 6 |
|
fveq2 |
|- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
| 7 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
| 8 |
|
df-1o |
|- 1o = suc (/) |
| 9 |
7 8
|
eqtr4di |
|- ( a = (/) -> suc a = 1o ) |
| 10 |
9
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
| 11 |
6 10
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 12 |
|
simpr3 |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
| 13 |
|
eldif |
|- ( n e. ( _om \ 1o ) <-> ( n e. _om /\ -. n e. 1o ) ) |
| 14 |
|
0ex |
|- (/) e. _V |
| 15 |
|
nnord |
|- ( n e. _om -> Ord n ) |
| 16 |
|
ordelsuc |
|- ( ( (/) e. _V /\ Ord n ) -> ( (/) e. n <-> suc (/) C_ n ) ) |
| 17 |
14 15 16
|
sylancr |
|- ( n e. _om -> ( (/) e. n <-> suc (/) C_ n ) ) |
| 18 |
8
|
sseq1i |
|- ( 1o C_ n <-> suc (/) C_ n ) |
| 19 |
|
1on |
|- 1o e. On |
| 20 |
19
|
onordi |
|- Ord 1o |
| 21 |
|
ordtri1 |
|- ( ( Ord 1o /\ Ord n ) -> ( 1o C_ n <-> -. n e. 1o ) ) |
| 22 |
20 15 21
|
sylancr |
|- ( n e. _om -> ( 1o C_ n <-> -. n e. 1o ) ) |
| 23 |
18 22
|
bitr3id |
|- ( n e. _om -> ( suc (/) C_ n <-> -. n e. 1o ) ) |
| 24 |
17 23
|
bitr2d |
|- ( n e. _om -> ( -. n e. 1o <-> (/) e. n ) ) |
| 25 |
24
|
biimpa |
|- ( ( n e. _om /\ -. n e. 1o ) -> (/) e. n ) |
| 26 |
13 25
|
sylbi |
|- ( n e. ( _om \ 1o ) -> (/) e. n ) |
| 27 |
26
|
adantr |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. n ) |
| 28 |
11 12 27
|
rspcdva |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) R ( f ` 1o ) ) |
| 29 |
5 28
|
eqbrtrrd |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x R ( f ` 1o ) ) |
| 30 |
|
vex |
|- x e. _V |
| 31 |
|
fvex |
|- ( f ` 1o ) e. _V |
| 32 |
30 31
|
breldm |
|- ( x R ( f ` 1o ) -> x e. dom R ) |
| 33 |
29 32
|
syl |
|- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x e. dom R ) |
| 34 |
33
|
ex |
|- ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
| 35 |
34
|
exlimdv |
|- ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
| 36 |
35
|
rexlimiv |
|- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
| 37 |
36
|
exlimiv |
|- ( E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
| 38 |
37
|
abssi |
|- { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ dom R |
| 39 |
4 38
|
eqsstri |
|- dom t++ R C_ dom R |
| 40 |
|
dmresv |
|- dom ( R |` _V ) = dom R |
| 41 |
|
relres |
|- Rel ( R |` _V ) |
| 42 |
|
ssttrcl |
|- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
| 43 |
41 42
|
ax-mp |
|- ( R |` _V ) C_ t++ ( R |` _V ) |
| 44 |
|
ttrclresv |
|- t++ ( R |` _V ) = t++ R |
| 45 |
43 44
|
sseqtri |
|- ( R |` _V ) C_ t++ R |
| 46 |
|
dmss |
|- ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) |
| 47 |
45 46
|
ax-mp |
|- dom ( R |` _V ) C_ dom t++ R |
| 48 |
40 47
|
eqsstrri |
|- dom R C_ dom t++ R |
| 49 |
39 48
|
eqssi |
|- dom t++ R = dom R |