Step |
Hyp |
Ref |
Expression |
1 |
|
ttrclselem.1 |
|- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
2 |
|
suceq |
|- ( m = (/) -> suc m = suc (/) ) |
3 |
|
df-1o |
|- 1o = suc (/) |
4 |
2 3
|
eqtr4di |
|- ( m = (/) -> suc m = 1o ) |
5 |
|
suceq |
|- ( suc m = 1o -> suc suc m = suc 1o ) |
6 |
4 5
|
syl |
|- ( m = (/) -> suc suc m = suc 1o ) |
7 |
6
|
fneq2d |
|- ( m = (/) -> ( f Fn suc suc m <-> f Fn suc 1o ) ) |
8 |
4
|
fveqeq2d |
|- ( m = (/) -> ( ( f ` suc m ) = X <-> ( f ` 1o ) = X ) ) |
9 |
8
|
anbi2d |
|- ( m = (/) -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
10 |
|
df1o2 |
|- 1o = { (/) } |
11 |
4 10
|
eqtrdi |
|- ( m = (/) -> suc m = { (/) } ) |
12 |
11
|
raleqdv |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
|
fveq2 |
|- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
15 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
16 |
15 3
|
eqtr4di |
|- ( a = (/) -> suc a = 1o ) |
17 |
16
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
18 |
14 17
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
19 |
13 18
|
ralsn |
|- ( A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) |
20 |
12 19
|
bitrdi |
|- ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
21 |
7 9 20
|
3anbi123d |
|- ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) |
22 |
21
|
exbidv |
|- ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) |
23 |
|
fveq2 |
|- ( m = (/) -> ( F ` m ) = ( F ` (/) ) ) |
24 |
23
|
eleq2d |
|- ( m = (/) -> ( y e. ( F ` m ) <-> y e. ( F ` (/) ) ) ) |
25 |
22 24
|
bibi12d |
|- ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) |
26 |
25
|
albidv |
|- ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) |
27 |
26
|
imbi2d |
|- ( m = (/) -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) ) |
28 |
|
suceq |
|- ( m = n -> suc m = suc n ) |
29 |
|
suceq |
|- ( suc m = suc n -> suc suc m = suc suc n ) |
30 |
28 29
|
syl |
|- ( m = n -> suc suc m = suc suc n ) |
31 |
30
|
fneq2d |
|- ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) |
32 |
28
|
fveqeq2d |
|- ( m = n -> ( ( f ` suc m ) = X <-> ( f ` suc n ) = X ) ) |
33 |
32
|
anbi2d |
|- ( m = n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) ) ) |
34 |
28
|
raleqdv |
|- ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
35 |
|
fveq2 |
|- ( a = c -> ( f ` a ) = ( f ` c ) ) |
36 |
|
suceq |
|- ( a = c -> suc a = suc c ) |
37 |
36
|
fveq2d |
|- ( a = c -> ( f ` suc a ) = ( f ` suc c ) ) |
38 |
35 37
|
breq12d |
|- ( a = c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) |
39 |
38
|
cbvralvw |
|- ( A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) |
40 |
34 39
|
bitrdi |
|- ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) |
41 |
31 33 40
|
3anbi123d |
|- ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) |
42 |
41
|
exbidv |
|- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) |
43 |
|
fneq1 |
|- ( f = g -> ( f Fn suc suc n <-> g Fn suc suc n ) ) |
44 |
|
fveq1 |
|- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
45 |
44
|
eqeq1d |
|- ( f = g -> ( ( f ` (/) ) = y <-> ( g ` (/) ) = y ) ) |
46 |
|
fveq1 |
|- ( f = g -> ( f ` suc n ) = ( g ` suc n ) ) |
47 |
46
|
eqeq1d |
|- ( f = g -> ( ( f ` suc n ) = X <-> ( g ` suc n ) = X ) ) |
48 |
45 47
|
anbi12d |
|- ( f = g -> ( ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) <-> ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) ) ) |
49 |
|
fveq1 |
|- ( f = g -> ( f ` c ) = ( g ` c ) ) |
50 |
|
fveq1 |
|- ( f = g -> ( f ` suc c ) = ( g ` suc c ) ) |
51 |
49 50
|
breq12d |
|- ( f = g -> ( ( f ` c ) ( R |` A ) ( f ` suc c ) <-> ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
52 |
51
|
ralbidv |
|- ( f = g -> ( A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) <-> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
53 |
43 48 52
|
3anbi123d |
|- ( f = g -> ( ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
54 |
53
|
cbvexvw |
|- ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
55 |
42 54
|
bitrdi |
|- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
56 |
|
fveq2 |
|- ( m = n -> ( F ` m ) = ( F ` n ) ) |
57 |
56
|
eleq2d |
|- ( m = n -> ( y e. ( F ` m ) <-> y e. ( F ` n ) ) ) |
58 |
55 57
|
bibi12d |
|- ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) |
59 |
58
|
albidv |
|- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) |
60 |
|
eqeq2 |
|- ( y = z -> ( ( g ` (/) ) = y <-> ( g ` (/) ) = z ) ) |
61 |
60
|
anbi1d |
|- ( y = z -> ( ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) |
62 |
61
|
3anbi2d |
|- ( y = z -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
63 |
62
|
exbidv |
|- ( y = z -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
64 |
|
eleq1 |
|- ( y = z -> ( y e. ( F ` n ) <-> z e. ( F ` n ) ) ) |
65 |
63 64
|
bibi12d |
|- ( y = z -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) |
66 |
65
|
cbvalvw |
|- ( A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) |
67 |
59 66
|
bitrdi |
|- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) |
68 |
67
|
imbi2d |
|- ( m = n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) ) |
69 |
|
suceq |
|- ( m = suc n -> suc m = suc suc n ) |
70 |
|
suceq |
|- ( suc m = suc suc n -> suc suc m = suc suc suc n ) |
71 |
69 70
|
syl |
|- ( m = suc n -> suc suc m = suc suc suc n ) |
72 |
71
|
fneq2d |
|- ( m = suc n -> ( f Fn suc suc m <-> f Fn suc suc suc n ) ) |
73 |
69
|
fveqeq2d |
|- ( m = suc n -> ( ( f ` suc m ) = X <-> ( f ` suc suc n ) = X ) ) |
74 |
73
|
anbi2d |
|- ( m = suc n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) |
75 |
69
|
raleqdv |
|- ( m = suc n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
76 |
72 74 75
|
3anbi123d |
|- ( m = suc n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
77 |
76
|
exbidv |
|- ( m = suc n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
78 |
|
fveq2 |
|- ( m = suc n -> ( F ` m ) = ( F ` suc n ) ) |
79 |
78
|
eleq2d |
|- ( m = suc n -> ( y e. ( F ` m ) <-> y e. ( F ` suc n ) ) ) |
80 |
77 79
|
bibi12d |
|- ( m = suc n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) |
81 |
80
|
albidv |
|- ( m = suc n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) |
82 |
81
|
imbi2d |
|- ( m = suc n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
83 |
|
suceq |
|- ( m = N -> suc m = suc N ) |
84 |
|
suceq |
|- ( suc m = suc N -> suc suc m = suc suc N ) |
85 |
83 84
|
syl |
|- ( m = N -> suc suc m = suc suc N ) |
86 |
85
|
fneq2d |
|- ( m = N -> ( f Fn suc suc m <-> f Fn suc suc N ) ) |
87 |
83
|
fveqeq2d |
|- ( m = N -> ( ( f ` suc m ) = X <-> ( f ` suc N ) = X ) ) |
88 |
87
|
anbi2d |
|- ( m = N -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) ) ) |
89 |
83
|
raleqdv |
|- ( m = N -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
90 |
86 88 89
|
3anbi123d |
|- ( m = N -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
91 |
90
|
exbidv |
|- ( m = N -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
92 |
|
fveq2 |
|- ( m = N -> ( F ` m ) = ( F ` N ) ) |
93 |
92
|
eleq2d |
|- ( m = N -> ( y e. ( F ` m ) <-> y e. ( F ` N ) ) ) |
94 |
91 93
|
bibi12d |
|- ( m = N -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
95 |
94
|
albidv |
|- ( m = N -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
96 |
95
|
imbi2d |
|- ( m = N -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) ) |
97 |
|
eqeq2 |
|- ( x = X -> ( ( f ` 1o ) = x <-> ( f ` 1o ) = X ) ) |
98 |
97
|
anbi2d |
|- ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
99 |
98
|
anbi2d |
|- ( x = X -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) |
100 |
99
|
exbidv |
|- ( x = X -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) |
101 |
|
vex |
|- y e. _V |
102 |
|
vex |
|- x e. _V |
103 |
101 102
|
ifex |
|- if ( b = (/) , y , x ) e. _V |
104 |
|
eqid |
|- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) |
105 |
103 104
|
fnmpti |
|- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o |
106 |
|
equid |
|- y = y |
107 |
|
equid |
|- x = x |
108 |
106 107
|
pm3.2i |
|- ( y = y /\ x = x ) |
109 |
|
1oex |
|- 1o e. _V |
110 |
109
|
sucex |
|- suc 1o e. _V |
111 |
110
|
mptex |
|- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) e. _V |
112 |
|
fneq1 |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f Fn suc 1o <-> ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o ) ) |
113 |
|
fveq1 |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) ) |
114 |
|
1on |
|- 1o e. On |
115 |
114
|
onordi |
|- Ord 1o |
116 |
|
0elsuc |
|- ( Ord 1o -> (/) e. suc 1o ) |
117 |
|
iftrue |
|- ( b = (/) -> if ( b = (/) , y , x ) = y ) |
118 |
117 104 101
|
fvmpt |
|- ( (/) e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y ) |
119 |
115 116 118
|
mp2b |
|- ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y |
120 |
113 119
|
eqtrdi |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = y ) |
121 |
120
|
eqeq1d |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` (/) ) = y <-> y = y ) ) |
122 |
|
fveq1 |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) ) |
123 |
109
|
sucid |
|- 1o e. suc 1o |
124 |
|
eqeq1 |
|- ( b = 1o -> ( b = (/) <-> 1o = (/) ) ) |
125 |
124
|
ifbid |
|- ( b = 1o -> if ( b = (/) , y , x ) = if ( 1o = (/) , y , x ) ) |
126 |
|
1n0 |
|- 1o =/= (/) |
127 |
126
|
neii |
|- -. 1o = (/) |
128 |
127
|
iffalsei |
|- if ( 1o = (/) , y , x ) = x |
129 |
125 128
|
eqtrdi |
|- ( b = 1o -> if ( b = (/) , y , x ) = x ) |
130 |
129 104 102
|
fvmpt |
|- ( 1o e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x ) |
131 |
123 130
|
ax-mp |
|- ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x |
132 |
122 131
|
eqtrdi |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = x ) |
133 |
132
|
eqeq1d |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` 1o ) = x <-> x = x ) ) |
134 |
121 133
|
anbi12d |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( y = y /\ x = x ) ) ) |
135 |
112 134
|
anbi12d |
|- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) ) ) |
136 |
111 135
|
spcev |
|- ( ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) ) |
137 |
105 108 136
|
mp2an |
|- E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) |
138 |
100 137
|
vtoclg |
|- ( X e. A -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
139 |
138
|
adantl |
|- ( ( R Se A /\ X e. A ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
140 |
139
|
biantrurd |
|- ( ( R Se A /\ X e. A ) -> ( ( y e. A /\ y R X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) |
141 |
101
|
elpred |
|- ( X e. A -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) |
142 |
141
|
adantl |
|- ( ( R Se A /\ X e. A ) -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) |
143 |
|
brres |
|- ( X e. A -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
144 |
143
|
adantl |
|- ( ( R Se A /\ X e. A ) -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
145 |
144
|
anbi2d |
|- ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) |
146 |
140 142 145
|
3bitr4rd |
|- ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> y e. Pred ( R , A , X ) ) ) |
147 |
|
df-3an |
|- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
148 |
|
breq12 |
|- ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) |
149 |
148
|
adantl |
|- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) |
150 |
149
|
pm5.32i |
|- ( ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
151 |
147 150
|
bitri |
|- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
152 |
151
|
exbii |
|- ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
153 |
|
19.41v |
|- ( E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
154 |
152 153
|
bitri |
|- ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
155 |
154
|
a1i |
|- ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) ) |
156 |
1
|
fveq1i |
|- ( F ` (/) ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) |
157 |
|
setlikespec |
|- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) |
158 |
157
|
ancoms |
|- ( ( R Se A /\ X e. A ) -> Pred ( R , A , X ) e. _V ) |
159 |
|
rdg0g |
|- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
160 |
158 159
|
syl |
|- ( ( R Se A /\ X e. A ) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
161 |
156 160
|
eqtrid |
|- ( ( R Se A /\ X e. A ) -> ( F ` (/) ) = Pred ( R , A , X ) ) |
162 |
161
|
eleq2d |
|- ( ( R Se A /\ X e. A ) -> ( y e. ( F ` (/) ) <-> y e. Pred ( R , A , X ) ) ) |
163 |
146 155 162
|
3bitr4d |
|- ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) |
164 |
163
|
alrimiv |
|- ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) |
165 |
|
eliun |
|- ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z e. ( F ` n ) y e. Pred ( R , A , z ) ) |
166 |
|
df-rex |
|- ( E. z e. ( F ` n ) y e. Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) |
167 |
165 166
|
bitri |
|- ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) |
168 |
101
|
elpred |
|- ( z e. _V -> ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) ) |
169 |
168
|
elv |
|- ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) |
170 |
169
|
anbi2i |
|- ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) |
171 |
|
anbi1 |
|- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) ) |
172 |
170 171
|
bitr4id |
|- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
173 |
172
|
alexbii |
|- ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
174 |
173
|
3ad2ant3 |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
175 |
167 174
|
bitrid |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
176 |
|
nnon |
|- ( n e. _om -> n e. On ) |
177 |
|
fvex |
|- ( F ` n ) e. _V |
178 |
1
|
ttrclselem1 |
|- ( n e. _om -> ( F ` n ) C_ A ) |
179 |
178
|
adantr |
|- ( ( n e. _om /\ R Se A ) -> ( F ` n ) C_ A ) |
180 |
|
dfse3 |
|- ( R Se A <-> A. z e. A Pred ( R , A , z ) e. _V ) |
181 |
180
|
biimpi |
|- ( R Se A -> A. z e. A Pred ( R , A , z ) e. _V ) |
182 |
181
|
adantl |
|- ( ( n e. _om /\ R Se A ) -> A. z e. A Pred ( R , A , z ) e. _V ) |
183 |
|
ssralv |
|- ( ( F ` n ) C_ A -> ( A. z e. A Pred ( R , A , z ) e. _V -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) ) |
184 |
179 182 183
|
sylc |
|- ( ( n e. _om /\ R Se A ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
185 |
184
|
adantrr |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
186 |
|
iunexg |
|- ( ( ( F ` n ) e. _V /\ A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
187 |
177 185 186
|
sylancr |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
188 |
|
nfcv |
|- F/_ b Pred ( R , A , X ) |
189 |
|
nfcv |
|- F/_ b n |
190 |
|
nfmpt1 |
|- F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) |
191 |
190 188
|
nfrdg |
|- F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
192 |
1 191
|
nfcxfr |
|- F/_ b F |
193 |
192 189
|
nffv |
|- F/_ b ( F ` n ) |
194 |
|
nfcv |
|- F/_ b Pred ( R , A , z ) |
195 |
193 194
|
nfiun |
|- F/_ b U_ z e. ( F ` n ) Pred ( R , A , z ) |
196 |
|
predeq3 |
|- ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) |
197 |
196
|
cbviunv |
|- U_ w e. b Pred ( R , A , w ) = U_ z e. b Pred ( R , A , z ) |
198 |
|
iuneq1 |
|- ( b = ( F ` n ) -> U_ z e. b Pred ( R , A , z ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
199 |
197 198
|
eqtrid |
|- ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
200 |
188 189 195 1 199
|
rdgsucmptf |
|- ( ( n e. On /\ U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
201 |
176 187 200
|
syl2an2r |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
202 |
201
|
3adant3 |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
203 |
202
|
eleq2d |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. ( F ` suc n ) <-> y e. U_ z e. ( F ` n ) Pred ( R , A , z ) ) ) |
204 |
|
eqeq2 |
|- ( x = X -> ( ( f ` suc suc n ) = x <-> ( f ` suc suc n ) = X ) ) |
205 |
204
|
anbi2d |
|- ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) |
206 |
205
|
3anbi2d |
|- ( x = X -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
207 |
206
|
exbidv |
|- ( x = X -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
208 |
|
eqeq2 |
|- ( x = X -> ( ( g ` suc n ) = x <-> ( g ` suc n ) = X ) ) |
209 |
208
|
anbi2d |
|- ( x = X -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) |
210 |
209
|
3anbi2d |
|- ( x = X -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
211 |
210
|
exbidv |
|- ( x = X -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
212 |
211
|
anbi1d |
|- ( x = X -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
213 |
212
|
exbidv |
|- ( x = X -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
214 |
207 213
|
bibi12d |
|- ( x = X -> ( ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) |
215 |
214
|
imbi2d |
|- ( x = X -> ( ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) <-> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) ) |
216 |
|
fvex |
|- ( f ` suc b ) e. _V |
217 |
|
eqid |
|- ( b e. suc suc n |-> ( f ` suc b ) ) = ( b e. suc suc n |-> ( f ` suc b ) ) |
218 |
216 217
|
fnmpti |
|- ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n |
219 |
218
|
a1i |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) |
220 |
|
peano2 |
|- ( n e. _om -> suc n e. _om ) |
221 |
220
|
adantr |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> suc n e. _om ) |
222 |
|
nnord |
|- ( suc n e. _om -> Ord suc n ) |
223 |
221 222
|
syl |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> Ord suc n ) |
224 |
|
0elsuc |
|- ( Ord suc n -> (/) e. suc suc n ) |
225 |
223 224
|
syl |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> (/) e. suc suc n ) |
226 |
|
suceq |
|- ( b = (/) -> suc b = suc (/) ) |
227 |
226
|
fveq2d |
|- ( b = (/) -> ( f ` suc b ) = ( f ` suc (/) ) ) |
228 |
|
fvex |
|- ( f ` suc (/) ) e. _V |
229 |
227 217 228
|
fvmpt |
|- ( (/) e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) |
230 |
225 229
|
syl |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) |
231 |
|
vex |
|- n e. _V |
232 |
231
|
sucex |
|- suc n e. _V |
233 |
232
|
sucid |
|- suc n e. suc suc n |
234 |
|
suceq |
|- ( b = suc n -> suc b = suc suc n ) |
235 |
234
|
fveq2d |
|- ( b = suc n -> ( f ` suc b ) = ( f ` suc suc n ) ) |
236 |
|
fvex |
|- ( f ` suc suc n ) e. _V |
237 |
235 217 236
|
fvmpt |
|- ( suc n e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) |
238 |
233 237
|
mp1i |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) |
239 |
|
simpr2r |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` suc suc n ) = x ) |
240 |
238 239
|
eqtrd |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) |
241 |
|
fveq2 |
|- ( a = suc c -> ( f ` a ) = ( f ` suc c ) ) |
242 |
|
suceq |
|- ( a = suc c -> suc a = suc suc c ) |
243 |
242
|
fveq2d |
|- ( a = suc c -> ( f ` suc a ) = ( f ` suc suc c ) ) |
244 |
241 243
|
breq12d |
|- ( a = suc c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) ) |
245 |
|
simplr3 |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) |
246 |
|
ordsucelsuc |
|- ( Ord suc n -> ( c e. suc n <-> suc c e. suc suc n ) ) |
247 |
223 246
|
syl |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( c e. suc n <-> suc c e. suc suc n ) ) |
248 |
247
|
biimpa |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> suc c e. suc suc n ) |
249 |
244 245 248
|
rspcdva |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) |
250 |
|
elelsuc |
|- ( c e. suc n -> c e. suc suc n ) |
251 |
|
suceq |
|- ( b = c -> suc b = suc c ) |
252 |
251
|
fveq2d |
|- ( b = c -> ( f ` suc b ) = ( f ` suc c ) ) |
253 |
|
fvex |
|- ( f ` suc c ) e. _V |
254 |
252 217 253
|
fvmpt |
|- ( c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
255 |
250 254
|
syl |
|- ( c e. suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
256 |
255
|
adantl |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
257 |
|
suceq |
|- ( b = suc c -> suc b = suc suc c ) |
258 |
257
|
fveq2d |
|- ( b = suc c -> ( f ` suc b ) = ( f ` suc suc c ) ) |
259 |
|
fvex |
|- ( f ` suc suc c ) e. _V |
260 |
258 217 259
|
fvmpt |
|- ( suc c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) |
261 |
248 260
|
syl |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) |
262 |
249 256 261
|
3brtr4d |
|- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
263 |
262
|
ralrimiva |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
264 |
232
|
sucex |
|- suc suc n e. _V |
265 |
264
|
mptex |
|- ( b e. suc suc n |-> ( f ` suc b ) ) e. _V |
266 |
|
fneq1 |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g Fn suc suc n <-> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) ) |
267 |
|
fveq1 |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` (/) ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) ) |
268 |
267
|
eqeq1d |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` (/) ) = ( f ` suc (/) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) ) |
269 |
|
fveq1 |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc n ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) ) |
270 |
269
|
eqeq1d |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` suc n ) = x <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) |
271 |
268 270
|
anbi12d |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) <-> ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) ) |
272 |
|
fveq1 |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ) |
273 |
|
fveq1 |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
274 |
272 273
|
breq12d |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) |
275 |
274
|
ralbidv |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) <-> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) |
276 |
266 271 275
|
3anbi123d |
|- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) ) |
277 |
265 276
|
spcev |
|- ( ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
278 |
219 230 240 263 277
|
syl121anc |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
279 |
|
simpr2l |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) = y ) |
280 |
15
|
fveq2d |
|- ( a = (/) -> ( f ` suc a ) = ( f ` suc (/) ) ) |
281 |
14 280
|
breq12d |
|- ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) ) |
282 |
|
simpr3 |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) |
283 |
281 282 225
|
rspcdva |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) |
284 |
279 283
|
eqbrtrrd |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> y ( R |` A ) ( f ` suc (/) ) ) |
285 |
|
eqeq2 |
|- ( z = ( f ` suc (/) ) -> ( ( g ` (/) ) = z <-> ( g ` (/) ) = ( f ` suc (/) ) ) ) |
286 |
285
|
anbi1d |
|- ( z = ( f ` suc (/) ) -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) ) ) |
287 |
286
|
3anbi2d |
|- ( z = ( f ` suc (/) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
288 |
287
|
exbidv |
|- ( z = ( f ` suc (/) ) -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
289 |
|
breq2 |
|- ( z = ( f ` suc (/) ) -> ( y ( R |` A ) z <-> y ( R |` A ) ( f ` suc (/) ) ) ) |
290 |
288 289
|
anbi12d |
|- ( z = ( f ` suc (/) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) ) ) |
291 |
228 290
|
spcev |
|- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) |
292 |
278 284 291
|
syl2anc |
|- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) |
293 |
292
|
ex |
|- ( n e. _om -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
294 |
293
|
exlimdv |
|- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
295 |
|
fvex |
|- ( g ` U. b ) e. _V |
296 |
101 295
|
ifex |
|- if ( b = (/) , y , ( g ` U. b ) ) e. _V |
297 |
|
eqid |
|- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) |
298 |
296 297
|
fnmpti |
|- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n |
299 |
298
|
a1i |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) |
300 |
|
peano2 |
|- ( suc n e. _om -> suc suc n e. _om ) |
301 |
220 300
|
syl |
|- ( n e. _om -> suc suc n e. _om ) |
302 |
301
|
3ad2ant1 |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc suc n e. _om ) |
303 |
|
nnord |
|- ( suc suc n e. _om -> Ord suc suc n ) |
304 |
302 303
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc suc n ) |
305 |
|
0elsuc |
|- ( Ord suc suc n -> (/) e. suc suc suc n ) |
306 |
304 305
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> (/) e. suc suc suc n ) |
307 |
|
iftrue |
|- ( b = (/) -> if ( b = (/) , y , ( g ` U. b ) ) = y ) |
308 |
307 297 101
|
fvmpt |
|- ( (/) e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) |
309 |
306 308
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) |
310 |
264
|
sucid |
|- suc suc n e. suc suc suc n |
311 |
|
eqeq1 |
|- ( b = suc suc n -> ( b = (/) <-> suc suc n = (/) ) ) |
312 |
|
unieq |
|- ( b = suc suc n -> U. b = U. suc suc n ) |
313 |
312
|
fveq2d |
|- ( b = suc suc n -> ( g ` U. b ) = ( g ` U. suc suc n ) ) |
314 |
311 313
|
ifbieq2d |
|- ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) ) |
315 |
|
nsuceq0 |
|- suc suc n =/= (/) |
316 |
315
|
neii |
|- -. suc suc n = (/) |
317 |
316
|
iffalsei |
|- if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) = ( g ` U. suc suc n ) |
318 |
314 317
|
eqtrdi |
|- ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc suc n ) ) |
319 |
|
fvex |
|- ( g ` U. suc suc n ) e. _V |
320 |
318 297 319
|
fvmpt |
|- ( suc suc n e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) |
321 |
310 320
|
mp1i |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) |
322 |
220
|
3ad2ant1 |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc n e. _om ) |
323 |
322 222
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc n ) |
324 |
|
ordunisuc |
|- ( Ord suc n -> U. suc suc n = suc n ) |
325 |
323 324
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> U. suc suc n = suc n ) |
326 |
325
|
fveq2d |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` U. suc suc n ) = ( g ` suc n ) ) |
327 |
|
simp22r |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` suc n ) = x ) |
328 |
321 326 327
|
3eqtrd |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) |
329 |
|
simpl3 |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> y ( R |` A ) z ) |
330 |
|
iftrue |
|- ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) |
331 |
330
|
adantl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) |
332 |
|
fveq2 |
|- ( a = (/) -> ( g ` a ) = ( g ` (/) ) ) |
333 |
|
simp22l |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` (/) ) = z ) |
334 |
332 333
|
sylan9eqr |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> ( g ` a ) = z ) |
335 |
329 331 334
|
3brtr4d |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) |
336 |
335
|
ex |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
337 |
336
|
adantr |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
338 |
|
ordsucelsuc |
|- ( Ord suc n -> ( b e. suc n <-> suc b e. suc suc n ) ) |
339 |
323 338
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n <-> suc b e. suc suc n ) ) |
340 |
|
elnn |
|- ( ( b e. suc n /\ suc n e. _om ) -> b e. _om ) |
341 |
322 340
|
sylan2 |
|- ( ( b e. suc n /\ ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) -> b e. _om ) |
342 |
341
|
ancoms |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> b e. _om ) |
343 |
|
nnord |
|- ( b e. _om -> Ord b ) |
344 |
342 343
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> Ord b ) |
345 |
|
ordunisuc |
|- ( Ord b -> U. suc b = b ) |
346 |
344 345
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> U. suc b = b ) |
347 |
346
|
fveq2d |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) = ( g ` b ) ) |
348 |
|
simp23 |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) |
349 |
|
fveq2 |
|- ( c = b -> ( g ` c ) = ( g ` b ) ) |
350 |
|
suceq |
|- ( c = b -> suc c = suc b ) |
351 |
350
|
fveq2d |
|- ( c = b -> ( g ` suc c ) = ( g ` suc b ) ) |
352 |
349 351
|
breq12d |
|- ( c = b -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) |
353 |
352
|
rspcv |
|- ( b e. suc n -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) |
354 |
348 353
|
mpan9 |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) |
355 |
347 354
|
eqbrtrd |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) |
356 |
355
|
ex |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
357 |
339 356
|
sylbird |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( suc b e. suc suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
358 |
357
|
imp |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) |
359 |
|
eleq1 |
|- ( a = suc b -> ( a e. suc suc n <-> suc b e. suc suc n ) ) |
360 |
359
|
anbi2d |
|- ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) <-> ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) ) ) |
361 |
|
eqeq1 |
|- ( a = suc b -> ( a = (/) <-> suc b = (/) ) ) |
362 |
|
unieq |
|- ( a = suc b -> U. a = U. suc b ) |
363 |
362
|
fveq2d |
|- ( a = suc b -> ( g ` U. a ) = ( g ` U. suc b ) ) |
364 |
361 363
|
ifbieq2d |
|- ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = if ( suc b = (/) , y , ( g ` U. suc b ) ) ) |
365 |
|
nsuceq0 |
|- suc b =/= (/) |
366 |
365
|
neii |
|- -. suc b = (/) |
367 |
366
|
iffalsei |
|- if ( suc b = (/) , y , ( g ` U. suc b ) ) = ( g ` U. suc b ) |
368 |
364 367
|
eqtrdi |
|- ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = ( g ` U. suc b ) ) |
369 |
|
fveq2 |
|- ( a = suc b -> ( g ` a ) = ( g ` suc b ) ) |
370 |
368 369
|
breq12d |
|- ( a = suc b -> ( if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) <-> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
371 |
360 370
|
imbi12d |
|- ( a = suc b -> ( ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) <-> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) ) |
372 |
358 371
|
mpbiri |
|- ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
373 |
372
|
com12 |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
374 |
373
|
rexlimdvw |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( E. b e. _om a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
375 |
|
elnn |
|- ( ( a e. suc suc n /\ suc suc n e. _om ) -> a e. _om ) |
376 |
375
|
ancoms |
|- ( ( suc suc n e. _om /\ a e. suc suc n ) -> a e. _om ) |
377 |
302 376
|
sylan |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> a e. _om ) |
378 |
|
nn0suc |
|- ( a e. _om -> ( a = (/) \/ E. b e. _om a = suc b ) ) |
379 |
377 378
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) \/ E. b e. _om a = suc b ) ) |
380 |
337 374 379
|
mpjaod |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) |
381 |
|
elelsuc |
|- ( a e. suc suc n -> a e. suc suc suc n ) |
382 |
|
eqeq1 |
|- ( b = a -> ( b = (/) <-> a = (/) ) ) |
383 |
|
unieq |
|- ( b = a -> U. b = U. a ) |
384 |
383
|
fveq2d |
|- ( b = a -> ( g ` U. b ) = ( g ` U. a ) ) |
385 |
382 384
|
ifbieq2d |
|- ( b = a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
386 |
|
fvex |
|- ( g ` U. a ) e. _V |
387 |
101 386
|
ifex |
|- if ( a = (/) , y , ( g ` U. a ) ) e. _V |
388 |
385 297 387
|
fvmpt |
|- ( a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
389 |
381 388
|
syl |
|- ( a e. suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
390 |
389
|
adantl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
391 |
|
ordsucelsuc |
|- ( Ord suc suc n -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) |
392 |
304 391
|
syl |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) |
393 |
392
|
biimpa |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> suc a e. suc suc suc n ) |
394 |
|
eqeq1 |
|- ( b = suc a -> ( b = (/) <-> suc a = (/) ) ) |
395 |
|
unieq |
|- ( b = suc a -> U. b = U. suc a ) |
396 |
395
|
fveq2d |
|- ( b = suc a -> ( g ` U. b ) = ( g ` U. suc a ) ) |
397 |
394 396
|
ifbieq2d |
|- ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc a = (/) , y , ( g ` U. suc a ) ) ) |
398 |
|
nsuceq0 |
|- suc a =/= (/) |
399 |
398
|
neii |
|- -. suc a = (/) |
400 |
399
|
iffalsei |
|- if ( suc a = (/) , y , ( g ` U. suc a ) ) = ( g ` U. suc a ) |
401 |
397 400
|
eqtrdi |
|- ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc a ) ) |
402 |
|
fvex |
|- ( g ` U. suc a ) e. _V |
403 |
401 297 402
|
fvmpt |
|- ( suc a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) |
404 |
393 403
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) |
405 |
|
nnord |
|- ( a e. _om -> Ord a ) |
406 |
377 405
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> Ord a ) |
407 |
|
ordunisuc |
|- ( Ord a -> U. suc a = a ) |
408 |
406 407
|
syl |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> U. suc a = a ) |
409 |
408
|
fveq2d |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( g ` U. suc a ) = ( g ` a ) ) |
410 |
404 409
|
eqtrd |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` a ) ) |
411 |
380 390 410
|
3brtr4d |
|- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
412 |
411
|
ralrimiva |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
413 |
264
|
sucex |
|- suc suc suc n e. _V |
414 |
413
|
mptex |
|- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) e. _V |
415 |
|
fneq1 |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f Fn suc suc suc n <-> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) ) |
416 |
|
fveq1 |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` (/) ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) ) |
417 |
416
|
eqeq1d |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` (/) ) = y <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) ) |
418 |
|
fveq1 |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc suc n ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) ) |
419 |
418
|
eqeq1d |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` suc suc n ) = x <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) |
420 |
417 419
|
anbi12d |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) ) |
421 |
|
fveq1 |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ) |
422 |
|
fveq1 |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
423 |
421 422
|
breq12d |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) |
424 |
423
|
ralbidv |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) |
425 |
415 420 424
|
3anbi123d |
|- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) ) |
426 |
414 425
|
spcev |
|- ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
427 |
299 309 328 412 426
|
syl121anc |
|- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
428 |
427
|
3exp |
|- ( n e. _om -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) |
429 |
428
|
exlimdv |
|- ( n e. _om -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) |
430 |
429
|
impd |
|- ( n e. _om -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
431 |
430
|
exlimdv |
|- ( n e. _om -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
432 |
294 431
|
impbid |
|- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
433 |
|
vex |
|- z e. _V |
434 |
433
|
brresi |
|- ( y ( R |` A ) z <-> ( y e. A /\ y R z ) ) |
435 |
434
|
anbi2i |
|- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) |
436 |
435
|
exbii |
|- ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) |
437 |
432 436
|
bitrdi |
|- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
438 |
215 437
|
vtoclg |
|- ( X e. A -> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) |
439 |
438
|
impcom |
|- ( ( n e. _om /\ X e. A ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
440 |
439
|
adantrl |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
441 |
440
|
3adant3 |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
442 |
175 203 441
|
3bitr4rd |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) |
443 |
442
|
alrimiv |
|- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) |
444 |
443
|
3exp |
|- ( n e. _om -> ( ( R Se A /\ X e. A ) -> ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
445 |
444
|
a2d |
|- ( n e. _om -> ( ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
446 |
27 68 82 96 164 445
|
finds |
|- ( N e. _om -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
447 |
446
|
3impib |
|- ( ( N e. _om /\ R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |
448 |
447
|
19.21bi |
|- ( ( N e. _om /\ R Se A /\ X e. A ) -> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |