Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( 𝑅 ↾ V ) |
2 |
|
ssttrcl |
⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) |
3 |
|
coss2 |
⊢ ( ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) → ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) |
5 |
|
ttrcltr |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ t++ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
6 |
4 5
|
sstri |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) ⊆ t++ ( 𝑅 ↾ V ) |
7 |
|
relco |
⊢ Rel ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) |
8 |
|
dfrel3 |
⊢ ( Rel ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↔ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ) |
9 |
7 8
|
mpbi |
⊢ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) |
10 |
|
resco |
⊢ ( ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) ↾ V ) = ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) |
11 |
|
ttrclresv |
⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 |
12 |
11
|
coeq1i |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ 𝑅 ) = ( t++ 𝑅 ∘ 𝑅 ) |
13 |
9 10 12
|
3eqtr3i |
⊢ ( t++ ( 𝑅 ↾ V ) ∘ ( 𝑅 ↾ V ) ) = ( t++ 𝑅 ∘ 𝑅 ) |
14 |
6 13 11
|
3sstr3i |
⊢ ( t++ 𝑅 ∘ 𝑅 ) ⊆ t++ 𝑅 |