Step |
Hyp |
Ref |
Expression |
1 |
|
eqtr3 |
⊢ ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
2 |
|
nnacan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
3 |
1 2
|
syl5ib |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
4 |
3
|
3expb |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
5 |
4
|
ralrimivva |
⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
8 |
7
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ∀ 𝑥 ∈ ω ∀ 𝑦 ∈ ω ( ( ( 𝐴 +o 𝑥 ) = 𝐵 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
9 |
5 8
|
sylibr |
⊢ ( 𝐴 ∈ ω → ∃* 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝐵 ) |