| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqtr3 |
|- ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) ) |
| 2 |
|
nnacan |
|- ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
| 3 |
1 2
|
imbitrid |
|- ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 4 |
3
|
3expb |
|- ( ( A e. _om /\ ( x e. _om /\ y e. _om ) ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 5 |
4
|
ralrimivva |
|- ( A e. _om -> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( A +o x ) = ( A +o y ) ) |
| 7 |
6
|
eqeq1d |
|- ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) ) |
| 8 |
7
|
rmo4 |
|- ( E* x e. _om ( A +o x ) = B <-> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 9 |
5 8
|
sylibr |
|- ( A e. _om -> E* x e. _om ( A +o x ) = B ) |