| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz9.13.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
setind |
⊢ ( ∀ 𝑧 ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) → { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V ) |
| 3 |
|
ssel |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) ) |
| 4 |
|
vex |
⊢ 𝑤 ∈ V |
| 5 |
|
eleq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 7 |
4 6
|
elab |
⊢ ( 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 8 |
3 7
|
imbitrdi |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 9 |
8
|
ralrimiv |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 10 |
|
vex |
⊢ 𝑧 ∈ V |
| 11 |
10
|
tz9.12 |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 12 |
9 11
|
syl |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 15 |
10 14
|
elab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 16 |
12 15
|
sylibr |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) |
| 17 |
2 16
|
mpg |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V |
| 18 |
1 17
|
eleqtrri |
⊢ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } |
| 19 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 20 |
19
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 21 |
1 20
|
elab |
⊢ ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 22 |
18 21
|
mpbi |
⊢ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) |