Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffinfix | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | filfinnfr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) | 
| 4 | uffix2 | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) | 
| 6 | 3 5 | mpbid | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) |