| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 2 |  | filn0 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ≠  ∅ ) | 
						
							| 3 |  | intssuni | ⊢ ( 𝐹  ≠  ∅  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 5 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 7 | 4 6 | sseqtrd | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  𝑋 ) | 
						
							| 8 | 7 | sseld | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑥  ∈  ∩  𝐹  →  𝑥  ∈  𝑋 ) ) | 
						
							| 9 | 8 | pm4.71rd | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑥  ∈  ∩  𝐹  ↔  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  ∩  𝐹 ) ) ) | 
						
							| 10 |  | uffixfr | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑥  ∈  ∩  𝐹  ↔  𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  ∩  𝐹 )  ↔  ( 𝑥  ∈  𝑋  ∧  𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) ) | 
						
							| 12 | 9 11 | bitrd | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑥  ∈  ∩  𝐹  ↔  ( 𝑥  ∈  𝑋  ∧  𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) ) | 
						
							| 13 | 12 | exbidv | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∃ 𝑥 𝑥  ∈  ∩  𝐹  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑋  ∧  𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) ) | 
						
							| 14 |  | n0 | ⊢ ( ∩  𝐹  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ∩  𝐹 ) | 
						
							| 15 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑋 𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 }  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑋  ∧  𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) | 
						
							| 16 | 13 14 15 | 3bitr4g | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∩  𝐹  ≠  ∅  ↔  ∃ 𝑥  ∈  𝑋 𝐹  =  { 𝑦  ∈  𝒫  𝑋  ∣  𝑥  ∈  𝑦 } ) ) |