| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 2 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 5 |  | filn0 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ≠  ∅ ) | 
						
							| 6 |  | intssuni | ⊢ ( 𝐹  ≠  ∅  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 7 | 2 5 6 | 3syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 8 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 10 | 7 9 | sseqtrd | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  𝑋 ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 |  | uffix | ⊢ ( ( 𝑋  ∈  𝐹  ∧  𝐴  ∈  𝑋 )  →  ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) ) | 
						
							| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) ) | 
						
							| 14 | 13 | simprd | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) | 
						
							| 15 | 13 | simpld | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 16 |  | fgcl | ⊢ ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen { { 𝐴 } } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  ( 𝑋 filGen { { 𝐴 } } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 20 |  | filsspw | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 22 |  | elintg | ⊢ ( 𝐴  ∈  ∩  𝐹  →  ( 𝐴  ∈  ∩  𝐹  ↔  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) ) | 
						
							| 23 | 22 | ibi | ⊢ ( 𝐴  ∈  ∩  𝐹  →  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) | 
						
							| 25 |  | ssrab | ⊢ ( 𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝐹  ⊆  𝒫  𝑋  ∧  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) ) | 
						
							| 26 | 21 24 25 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 27 |  | ufilmax | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 28 | 1 18 26 27 | syl3anc | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 29 |  | eqimss | ⊢ ( 𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  →  𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 31 | 25 | simprbi | ⊢ ( 𝐹  ⊆  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  →  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) | 
						
							| 33 |  | eleq2 | ⊢ ( 𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  →  ( 𝑋  ∈  𝐹  ↔  𝑋  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) ) | 
						
							| 34 | 33 | biimpac | ⊢ ( ( 𝑋  ∈  𝐹  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  𝑋  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 35 | 4 34 | sylan | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  𝑋  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 36 |  | eleq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝑋 ) ) | 
						
							| 37 | 36 | elrab | ⊢ ( 𝑋  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝑋  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝑋  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  →  𝐴  ∈  𝑋 ) | 
						
							| 39 |  | elintg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ∩  𝐹  ↔  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) ) | 
						
							| 40 | 35 38 39 | 3syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  ( 𝐴  ∈  ∩  𝐹  ↔  ∀ 𝑥  ∈  𝐹 𝐴  ∈  𝑥 ) ) | 
						
							| 41 | 32 40 | mpbird | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  →  𝐴  ∈  ∩  𝐹 ) | 
						
							| 42 | 28 41 | impbida | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝐴  ∈  ∩  𝐹  ↔  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) ) |