Metamath Proof Explorer


Theorem uffix

Description: Lemma for fixufil and uffixfr . (Contributed by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffix ( ( 𝑋𝑉𝐴𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴𝑋 → { 𝐴 } ⊆ 𝑋 )
2 snnzg ( 𝐴𝑋 → { 𝐴 } ≠ ∅ )
3 simpl ( ( 𝑋𝑉𝐴𝑋 ) → 𝑋𝑉 )
4 snfbas ( ( { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ∧ 𝑋𝑉 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) )
5 1 2 3 4 syl2an23an ( ( 𝑋𝑉𝐴𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) )
6 velpw ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
7 6 a1i ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 ) )
8 snex { 𝐴 } ∈ V
9 8 snid { 𝐴 } ∈ { { 𝐴 } }
10 snssi ( 𝐴𝑦 → { 𝐴 } ⊆ 𝑦 )
11 sseq1 ( 𝑥 = { 𝐴 } → ( 𝑥𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) )
12 11 rspcev ( ( { 𝐴 } ∈ { { 𝐴 } } ∧ { 𝐴 } ⊆ 𝑦 ) → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 )
13 9 10 12 sylancr ( 𝐴𝑦 → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 )
14 intss1 ( 𝑥 ∈ { { 𝐴 } } → { { 𝐴 } } ⊆ 𝑥 )
15 sstr2 ( { { 𝐴 } } ⊆ 𝑥 → ( 𝑥𝑦 { { 𝐴 } } ⊆ 𝑦 ) )
16 14 15 syl ( 𝑥 ∈ { { 𝐴 } } → ( 𝑥𝑦 { { 𝐴 } } ⊆ 𝑦 ) )
17 snidg ( 𝐴𝑋𝐴 ∈ { 𝐴 } )
18 17 adantl ( ( 𝑋𝑉𝐴𝑋 ) → 𝐴 ∈ { 𝐴 } )
19 8 intsn { { 𝐴 } } = { 𝐴 }
20 18 19 eleqtrrdi ( ( 𝑋𝑉𝐴𝑋 ) → 𝐴 { { 𝐴 } } )
21 ssel ( { { 𝐴 } } ⊆ 𝑦 → ( 𝐴 { { 𝐴 } } → 𝐴𝑦 ) )
22 20 21 syl5com ( ( 𝑋𝑉𝐴𝑋 ) → ( { { 𝐴 } } ⊆ 𝑦𝐴𝑦 ) )
23 16 22 sylan9r ( ( ( 𝑋𝑉𝐴𝑋 ) ∧ 𝑥 ∈ { { 𝐴 } } ) → ( 𝑥𝑦𝐴𝑦 ) )
24 23 rexlimdva ( ( 𝑋𝑉𝐴𝑋 ) → ( ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦𝐴𝑦 ) )
25 13 24 impbid2 ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝐴𝑦 ↔ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 ) )
26 7 25 anbi12d ( ( 𝑋𝑉𝐴𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ↔ ( 𝑦𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 ) ) )
27 eleq2w ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
28 27 elrab ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) )
29 28 a1i ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋𝐴𝑦 ) ) )
30 elfg ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 ) ) )
31 5 30 syl ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥𝑦 ) ) )
32 26 29 31 3bitr4d ( ( 𝑋𝑉𝐴𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ) )
33 32 eqrdv ( ( 𝑋𝑉𝐴𝑋 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) )
34 5 33 jca ( ( 𝑋𝑉𝐴𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) )