| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 2 |  | snnzg | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ≠  ∅ ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  𝑋  ∈  𝑉 ) | 
						
							| 4 |  | snfbas | ⊢ ( ( { 𝐴 }  ⊆  𝑋  ∧  { 𝐴 }  ≠  ∅  ∧  𝑋  ∈  𝑉 )  →  { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 5 | 1 2 3 4 | syl2an23an | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 6 |  | velpw | ⊢ ( 𝑦  ∈  𝒫  𝑋  ↔  𝑦  ⊆  𝑋 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  ∈  𝒫  𝑋  ↔  𝑦  ⊆  𝑋 ) ) | 
						
							| 8 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 9 | 8 | snid | ⊢ { 𝐴 }  ∈  { { 𝐴 } } | 
						
							| 10 |  | snssi | ⊢ ( 𝐴  ∈  𝑦  →  { 𝐴 }  ⊆  𝑦 ) | 
						
							| 11 |  | sseq1 | ⊢ ( 𝑥  =  { 𝐴 }  →  ( 𝑥  ⊆  𝑦  ↔  { 𝐴 }  ⊆  𝑦 ) ) | 
						
							| 12 | 11 | rspcev | ⊢ ( ( { 𝐴 }  ∈  { { 𝐴 } }  ∧  { 𝐴 }  ⊆  𝑦 )  →  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) | 
						
							| 13 | 9 10 12 | sylancr | ⊢ ( 𝐴  ∈  𝑦  →  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) | 
						
							| 14 |  | intss1 | ⊢ ( 𝑥  ∈  { { 𝐴 } }  →  ∩  { { 𝐴 } }  ⊆  𝑥 ) | 
						
							| 15 |  | sstr2 | ⊢ ( ∩  { { 𝐴 } }  ⊆  𝑥  →  ( 𝑥  ⊆  𝑦  →  ∩  { { 𝐴 } }  ⊆  𝑦 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑥  ∈  { { 𝐴 } }  →  ( 𝑥  ⊆  𝑦  →  ∩  { { 𝐴 } }  ⊆  𝑦 ) ) | 
						
							| 17 |  | snidg | ⊢ ( 𝐴  ∈  𝑋  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 19 | 8 | intsn | ⊢ ∩  { { 𝐴 } }  =  { 𝐴 } | 
						
							| 20 | 18 19 | eleqtrrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  ∩  { { 𝐴 } } ) | 
						
							| 21 |  | ssel | ⊢ ( ∩  { { 𝐴 } }  ⊆  𝑦  →  ( 𝐴  ∈  ∩  { { 𝐴 } }  →  𝐴  ∈  𝑦 ) ) | 
						
							| 22 | 20 21 | syl5com | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( ∩  { { 𝐴 } }  ⊆  𝑦  →  𝐴  ∈  𝑦 ) ) | 
						
							| 23 | 16 22 | sylan9r | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  { { 𝐴 } } )  →  ( 𝑥  ⊆  𝑦  →  𝐴  ∈  𝑦 ) ) | 
						
							| 24 | 23 | rexlimdva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦  →  𝐴  ∈  𝑦 ) ) | 
						
							| 25 | 13 24 | impbid2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  𝑦  ↔  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) ) | 
						
							| 26 | 7 25 | anbi12d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ↔  ( 𝑦  ⊆  𝑋  ∧  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) ) ) | 
						
							| 27 |  | eleq2w | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝑦 ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 ) ) ) | 
						
							| 30 |  | elfg | ⊢ ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑦  ∈  ( 𝑋 filGen { { 𝐴 } } )  ↔  ( 𝑦  ⊆  𝑋  ∧  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) ) ) | 
						
							| 31 | 5 30 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  ∈  ( 𝑋 filGen { { 𝐴 } } )  ↔  ( 𝑦  ⊆  𝑋  ∧  ∃ 𝑥  ∈  { { 𝐴 } } 𝑥  ⊆  𝑦 ) ) ) | 
						
							| 32 | 26 29 31 | 3bitr4d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  𝑦  ∈  ( 𝑋 filGen { { 𝐴 } } ) ) ) | 
						
							| 33 | 32 | eqrdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) | 
						
							| 34 | 5 33 | jca | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) ) |