Metamath Proof Explorer


Theorem snfbas

Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion snfbas ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
2 1 3adant2 ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → 𝐴 ∈ V )
3 simp2 ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → 𝐴 ≠ ∅ )
4 snfil ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) )
5 2 3 4 syl2anc ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) )
6 filfbas ( { 𝐴 } ∈ ( Fil ‘ 𝐴 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) )
7 5 6 syl ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) )
8 simp1 ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → 𝐴𝐵 )
9 elpw2g ( 𝐵𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
10 9 3ad2ant3 ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
11 8 10 mpbird ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → 𝐴 ∈ 𝒫 𝐵 )
12 11 snssd ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → { 𝐴 } ⊆ 𝒫 𝐵 )
13 simp3 ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → 𝐵𝑉 )
14 fbasweak ( ( { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ∧ { 𝐴 } ⊆ 𝒫 𝐵𝐵𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) )
15 7 12 13 14 syl3anc ( ( 𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) )