| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
| 2 |
1
|
3adant2 |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. _V ) |
| 3 |
|
simp2 |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A =/= (/) ) |
| 4 |
|
snfil |
|- ( ( A e. _V /\ A =/= (/) ) -> { A } e. ( Fil ` A ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( Fil ` A ) ) |
| 6 |
|
filfbas |
|- ( { A } e. ( Fil ` A ) -> { A } e. ( fBas ` A ) ) |
| 7 |
5 6
|
syl |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` A ) ) |
| 8 |
|
simp1 |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A C_ B ) |
| 9 |
|
elpw2g |
|- ( B e. V -> ( A e. ~P B <-> A C_ B ) ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> ( A e. ~P B <-> A C_ B ) ) |
| 11 |
8 10
|
mpbird |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. ~P B ) |
| 12 |
11
|
snssd |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } C_ ~P B ) |
| 13 |
|
simp3 |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> B e. V ) |
| 14 |
|
fbasweak |
|- ( ( { A } e. ( fBas ` A ) /\ { A } C_ ~P B /\ B e. V ) -> { A } e. ( fBas ` B ) ) |
| 15 |
7 12 13 14
|
syl3anc |
|- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) ) |