Metamath Proof Explorer


Theorem uffix

Description: Lemma for fixufil and uffixfr . (Contributed by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffix XVAXAfBasXx𝒫X|Ax=XfilGenA

Proof

Step Hyp Ref Expression
1 snssi AXAX
2 snnzg AXA
3 simpl XVAXXV
4 snfbas AXAXVAfBasX
5 1 2 3 4 syl2an23an XVAXAfBasX
6 velpw y𝒫XyX
7 6 a1i XVAXy𝒫XyX
8 snex AV
9 8 snid AA
10 snssi AyAy
11 sseq1 x=AxyAy
12 11 rspcev AAAyxAxy
13 9 10 12 sylancr AyxAxy
14 intss1 xAAx
15 sstr2 AxxyAy
16 14 15 syl xAxyAy
17 snidg AXAA
18 17 adantl XVAXAA
19 8 intsn A=A
20 18 19 eleqtrrdi XVAXAA
21 ssel AyAAAy
22 20 21 syl5com XVAXAyAy
23 16 22 sylan9r XVAXxAxyAy
24 23 rexlimdva XVAXxAxyAy
25 13 24 impbid2 XVAXAyxAxy
26 7 25 anbi12d XVAXy𝒫XAyyXxAxy
27 eleq2w x=yAxAy
28 27 elrab yx𝒫X|Axy𝒫XAy
29 28 a1i XVAXyx𝒫X|Axy𝒫XAy
30 elfg AfBasXyXfilGenAyXxAxy
31 5 30 syl XVAXyXfilGenAyXxAxy
32 26 29 31 3bitr4d XVAXyx𝒫X|AxyXfilGenA
33 32 eqrdv XVAXx𝒫X|Ax=XfilGenA
34 5 33 jca XVAXAfBasXx𝒫X|Ax=XfilGenA