| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uffix |  | 
						
							| 2 | 1 | simprd |  | 
						
							| 3 | 1 | simpld |  | 
						
							| 4 |  | fgcl |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 | 2 5 | eqeltrd |  | 
						
							| 7 |  | undif2 |  | 
						
							| 8 |  | elpwi |  | 
						
							| 9 |  | ssequn1 |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 | 7 10 | eqtr2id |  | 
						
							| 12 | 11 | eleq2d |  | 
						
							| 13 | 12 | biimpac |  | 
						
							| 14 |  | elun |  | 
						
							| 15 | 13 14 | sylib |  | 
						
							| 16 | 15 | adantll |  | 
						
							| 17 |  | ibar |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 |  | difss |  | 
						
							| 20 |  | elpw2g |  | 
						
							| 21 | 19 20 | mpbiri |  | 
						
							| 22 | 21 | ad2antrr |  | 
						
							| 23 | 22 | biantrurd |  | 
						
							| 24 | 18 23 | orbi12d |  | 
						
							| 25 | 16 24 | mpbid |  | 
						
							| 26 | 25 | ralrimiva |  | 
						
							| 27 |  | eleq2 |  | 
						
							| 28 | 27 | elrab |  | 
						
							| 29 |  | eleq2 |  | 
						
							| 30 | 29 | elrab |  | 
						
							| 31 | 28 30 | orbi12i |  | 
						
							| 32 | 31 | ralbii |  | 
						
							| 33 | 26 32 | sylibr |  | 
						
							| 34 |  | isufil |  | 
						
							| 35 | 6 33 34 | sylanbrc |  |