| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uffix | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  =  ( 𝑋 filGen { { 𝐴 } } ) ) | 
						
							| 3 | 1 | simpld | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 4 |  | fgcl | ⊢ ( { { 𝐴 } }  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen { { 𝐴 } } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ( 𝑋 filGen { { 𝐴 } } )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 6 | 2 5 | eqeltrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 7 |  | undif2 | ⊢ ( 𝑦  ∪  ( 𝑋  ∖  𝑦 ) )  =  ( 𝑦  ∪  𝑋 ) | 
						
							| 8 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑦  ⊆  𝑋 ) | 
						
							| 9 |  | ssequn1 | ⊢ ( 𝑦  ⊆  𝑋  ↔  ( 𝑦  ∪  𝑋 )  =  𝑋 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  ( 𝑦  ∪  𝑋 )  =  𝑋 ) | 
						
							| 11 | 7 10 | eqtr2id | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑋  =  ( 𝑦  ∪  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  ( 𝐴  ∈  𝑋  ↔  𝐴  ∈  ( 𝑦  ∪  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 13 | 12 | biimpac | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝒫  𝑋 )  →  𝐴  ∈  ( 𝑦  ∪  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 14 |  | elun | ⊢ ( 𝐴  ∈  ( 𝑦  ∪  ( 𝑋  ∖  𝑦 ) )  ↔  ( 𝐴  ∈  𝑦  ∨  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( 𝐴  ∈  𝑦  ∨  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 16 | 15 | adantll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( 𝐴  ∈  𝑦  ∨  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 17 |  | ibar | ⊢ ( 𝑦  ∈  𝒫  𝑋  →  ( 𝐴  ∈  𝑦  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 ) ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( 𝐴  ∈  𝑦  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 ) ) ) | 
						
							| 19 |  | difss | ⊢ ( 𝑋  ∖  𝑦 )  ⊆  𝑋 | 
						
							| 20 |  | elpw2g | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  𝑦 )  ⊆  𝑋 ) ) | 
						
							| 21 | 19 20 | mpbiri | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋 ) | 
						
							| 23 | 22 | biantrurd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( 𝐴  ∈  ( 𝑋  ∖  𝑦 )  ↔  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 24 | 18 23 | orbi12d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ( 𝐴  ∈  𝑦  ∨  𝐴  ∈  ( 𝑋  ∖  𝑦 ) )  ↔  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ∨  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) ) | 
						
							| 25 | 16 24 | mpbid | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ∨  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝒫  𝑋 ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ∨  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 27 |  | eleq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝑦 ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 ) ) | 
						
							| 29 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝑋  ∖  𝑦 )  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 30 | 29 | elrab | ⊢ ( ( 𝑋  ∖  𝑦 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ↔  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) | 
						
							| 31 | 28 30 | orbi12i | ⊢ ( ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∨  ( 𝑋  ∖  𝑦 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  ↔  ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ∨  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 32 | 31 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝒫  𝑋 ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∨  ( 𝑋  ∖  𝑦 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } )  ↔  ∀ 𝑦  ∈  𝒫  𝑋 ( ( 𝑦  ∈  𝒫  𝑋  ∧  𝐴  ∈  𝑦 )  ∨  ( ( 𝑋  ∖  𝑦 )  ∈  𝒫  𝑋  ∧  𝐴  ∈  ( 𝑋  ∖  𝑦 ) ) ) ) | 
						
							| 33 | 26 32 | sylibr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝒫  𝑋 ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∨  ( 𝑋  ∖  𝑦 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) ) | 
						
							| 34 |  | isufil | ⊢ ( { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( UFil ‘ 𝑋 )  ↔  ( { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝒫  𝑋 ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∨  ( 𝑋  ∖  𝑦 )  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) ) ) | 
						
							| 35 | 6 33 34 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 }  ∈  ( UFil ‘ 𝑋 ) ) |