| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) |
| 2 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 3 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 4 |
|
intssuni |
⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 5 |
2 3 4
|
3syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 6 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 7 |
2 6
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 8 |
5 7
|
sseqtrd |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
| 9 |
8
|
sselda |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 10 |
9
|
snssd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ⊆ 𝑋 ) |
| 11 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 12 |
11
|
elpw |
⊢ ( { 𝐴 } ∈ 𝒫 𝑋 ↔ { 𝐴 } ⊆ 𝑋 ) |
| 13 |
10 12
|
sylibr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ 𝒫 𝑋 ) |
| 14 |
|
snidg |
⊢ ( 𝐴 ∈ ∩ 𝐹 → 𝐴 ∈ { 𝐴 } ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ { 𝐴 } ) |
| 16 |
1 13 15
|
elrabd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 17 |
|
uffixfr |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 19 |
16 18
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝐴 } ∈ 𝐹 ) |