| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝑥  =  { 𝐴 }  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  { 𝐴 } ) ) | 
						
							| 2 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | filn0 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ≠  ∅ ) | 
						
							| 4 |  | intssuni | ⊢ ( 𝐹  ≠  ∅  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  ∪  𝐹 ) | 
						
							| 6 |  | filunibas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∪  𝐹  =  𝑋 ) | 
						
							| 8 | 5 7 | sseqtrd | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∩  𝐹  ⊆  𝑋 ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐴  ∈  𝑋 ) | 
						
							| 10 | 9 | snssd | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 11 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 12 | 11 | elpw | ⊢ ( { 𝐴 }  ∈  𝒫  𝑋  ↔  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝐴 }  ∈  𝒫  𝑋 ) | 
						
							| 14 |  | snidg | ⊢ ( 𝐴  ∈  ∩  𝐹  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 16 | 1 13 15 | elrabd | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝐴 }  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 17 |  | uffixfr | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝐴  ∈  ∩  𝐹  ↔  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  𝐹  =  { 𝑥  ∈  𝒫  𝑋  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 19 | 16 18 | eleqtrrd | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ∈  ∩  𝐹 )  →  { 𝐴 }  ∈  𝐹 ) |