Metamath Proof Explorer


Theorem uffixsn

Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixsn
|- ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { A } e. F )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( x = { A } -> ( A e. x <-> A e. { A } ) )
2 ufilfil
 |-  ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) )
3 filn0
 |-  ( F e. ( Fil ` X ) -> F =/= (/) )
4 intssuni
 |-  ( F =/= (/) -> |^| F C_ U. F )
5 2 3 4 3syl
 |-  ( F e. ( UFil ` X ) -> |^| F C_ U. F )
6 filunibas
 |-  ( F e. ( Fil ` X ) -> U. F = X )
7 2 6 syl
 |-  ( F e. ( UFil ` X ) -> U. F = X )
8 5 7 sseqtrd
 |-  ( F e. ( UFil ` X ) -> |^| F C_ X )
9 8 sselda
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> A e. X )
10 9 snssd
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { A } C_ X )
11 snex
 |-  { A } e. _V
12 11 elpw
 |-  ( { A } e. ~P X <-> { A } C_ X )
13 10 12 sylibr
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { A } e. ~P X )
14 snidg
 |-  ( A e. |^| F -> A e. { A } )
15 14 adantl
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> A e. { A } )
16 1 13 15 elrabd
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { A } e. { x e. ~P X | A e. x } )
17 uffixfr
 |-  ( F e. ( UFil ` X ) -> ( A e. |^| F <-> F = { x e. ~P X | A e. x } ) )
18 17 biimpa
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> F = { x e. ~P X | A e. x } )
19 16 18 eleqtrrd
 |-  ( ( F e. ( UFil ` X ) /\ A e. |^| F ) -> { A } e. F )