| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( |^| F = (/) -> ( |^| F ~<_ 1o <-> (/) ~<_ 1o ) ) | 
						
							| 2 |  | uffixsn |  |-  ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> { x } e. F ) | 
						
							| 3 |  | intss1 |  |-  ( { x } e. F -> |^| F C_ { x } ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> |^| F C_ { x } ) | 
						
							| 5 |  | simpr |  |-  ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> x e. |^| F ) | 
						
							| 6 | 5 | snssd |  |-  ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> { x } C_ |^| F ) | 
						
							| 7 | 4 6 | eqssd |  |-  ( ( F e. ( UFil ` X ) /\ x e. |^| F ) -> |^| F = { x } ) | 
						
							| 8 | 7 | ex |  |-  ( F e. ( UFil ` X ) -> ( x e. |^| F -> |^| F = { x } ) ) | 
						
							| 9 | 8 | eximdv |  |-  ( F e. ( UFil ` X ) -> ( E. x x e. |^| F -> E. x |^| F = { x } ) ) | 
						
							| 10 |  | n0 |  |-  ( |^| F =/= (/) <-> E. x x e. |^| F ) | 
						
							| 11 |  | en1 |  |-  ( |^| F ~~ 1o <-> E. x |^| F = { x } ) | 
						
							| 12 | 9 10 11 | 3imtr4g |  |-  ( F e. ( UFil ` X ) -> ( |^| F =/= (/) -> |^| F ~~ 1o ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( F e. ( UFil ` X ) /\ |^| F =/= (/) ) -> |^| F ~~ 1o ) | 
						
							| 14 |  | endom |  |-  ( |^| F ~~ 1o -> |^| F ~<_ 1o ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( F e. ( UFil ` X ) /\ |^| F =/= (/) ) -> |^| F ~<_ 1o ) | 
						
							| 16 |  | 1on |  |-  1o e. On | 
						
							| 17 |  | 0domg |  |-  ( 1o e. On -> (/) ~<_ 1o ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( F e. ( UFil ` X ) -> (/) ~<_ 1o ) | 
						
							| 19 | 1 15 18 | pm2.61ne |  |-  ( F e. ( UFil ` X ) -> |^| F ~<_ 1o ) |