| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑋  →  𝑥  ⊆  𝑋 ) | 
						
							| 2 |  | ufilb | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  ( ¬  𝑥  ∈  𝐹  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ( 𝑋  ∖  𝑥 )  ∈  Fin )  →  ( ¬  𝑥  ∈  𝐹  ↔  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 4 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 6 |  | filfinnfr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑋  ∖  𝑥 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝑥 )  ∈  Fin )  →  ∩  𝐹  ≠  ∅ ) | 
						
							| 7 | 6 | 3exp | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝐹  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  ∩  𝐹  ≠  ∅ ) ) ) | 
						
							| 8 | 7 | com23 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝐹  →  ∩  𝐹  ≠  ∅ ) ) ) | 
						
							| 9 | 5 8 | syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝐹  →  ∩  𝐹  ≠  ∅ ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ( 𝑋  ∖  𝑥 )  ∈  Fin )  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝐹  →  ∩  𝐹  ≠  ∅ ) ) | 
						
							| 11 | 3 10 | sylbid | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ( 𝑋  ∖  𝑥 )  ∈  Fin )  →  ( ¬  𝑥  ∈  𝐹  →  ∩  𝐹  ≠  ∅ ) ) | 
						
							| 12 | 11 | necon4bd | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ( 𝑋  ∖  𝑥 )  ∈  Fin )  →  ( ∩  𝐹  =  ∅  →  𝑥  ∈  𝐹 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  ( ∩  𝐹  =  ∅  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 14 | 13 | com23 | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  ( ∩  𝐹  =  ∅  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 15 | 1 14 | sylan2 | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑥  ∈  𝒫  𝑋 )  →  ( ∩  𝐹  =  ∅  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 16 | 15 | ralrimdva | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∩  𝐹  =  ∅  →  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 18 |  | uffixsn | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  { 𝑦 }  ∈  𝐹 ) | 
						
							| 19 |  | filelss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  { 𝑦 }  ∈  𝐹 )  →  { 𝑦 }  ⊆  𝑋 ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  { 𝑦 }  ⊆  𝑋 ) | 
						
							| 21 |  | dfss4 | ⊢ ( { 𝑦 }  ⊆  𝑋  ↔  ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  =  { 𝑦 } ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  =  { 𝑦 } ) | 
						
							| 23 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 24 | 22 23 | eqeltrdi | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  ∈  Fin ) | 
						
							| 25 |  | difss | ⊢ ( 𝑋  ∖  { 𝑦 } )  ⊆  𝑋 | 
						
							| 26 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 27 |  | elpw2g | ⊢ ( 𝑋  ∈  𝐹  →  ( ( 𝑋  ∖  { 𝑦 } )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  { 𝑦 } )  ⊆  𝑋 ) ) | 
						
							| 28 | 17 26 27 | 3syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ( 𝑋  ∖  { 𝑦 } )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∖  { 𝑦 } )  ⊆  𝑋 ) ) | 
						
							| 29 | 25 28 | mpbiri | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( 𝑋  ∖  { 𝑦 } )  ∈  𝒫  𝑋 ) | 
						
							| 30 |  | difeq2 | ⊢ ( 𝑥  =  ( 𝑋  ∖  { 𝑦 } )  →  ( 𝑋  ∖  𝑥 )  =  ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑥  =  ( 𝑋  ∖  { 𝑦 } )  →  ( ( 𝑋  ∖  𝑥 )  ∈  Fin  ↔  ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  ∈  Fin ) ) | 
						
							| 32 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑋  ∖  { 𝑦 } )  →  ( 𝑥  ∈  𝐹  ↔  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) | 
						
							| 33 | 31 32 | imbi12d | ⊢ ( 𝑥  =  ( 𝑋  ∖  { 𝑦 } )  →  ( ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  ↔  ( ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  ∈  Fin  →  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) ) | 
						
							| 34 | 33 | rspcv | ⊢ ( ( 𝑋  ∖  { 𝑦 } )  ∈  𝒫  𝑋  →  ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  →  ( ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  ∈  Fin  →  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) ) | 
						
							| 35 | 29 34 | syl | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  →  ( ( 𝑋  ∖  ( 𝑋  ∖  { 𝑦 } ) )  ∈  Fin  →  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) ) | 
						
							| 36 | 24 35 | mpid | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  →  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) | 
						
							| 37 |  | ufilb | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  { 𝑦 }  ⊆  𝑋 )  →  ( ¬  { 𝑦 }  ∈  𝐹  ↔  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) | 
						
							| 38 | 20 37 | syldan | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ¬  { 𝑦 }  ∈  𝐹  ↔  ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹 ) ) | 
						
							| 39 | 18 | pm2.24d | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ¬  { 𝑦 }  ∈  𝐹  →  ¬  𝑦  ∈  ∩  𝐹 ) ) | 
						
							| 40 | 38 39 | sylbird | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ( 𝑋  ∖  { 𝑦 } )  ∈  𝐹  →  ¬  𝑦  ∈  ∩  𝐹 ) ) | 
						
							| 41 | 36 40 | syld | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑦  ∈  ∩  𝐹 )  →  ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  →  ¬  𝑦  ∈  ∩  𝐹 ) ) | 
						
							| 42 | 41 | impancom | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) )  →  ( 𝑦  ∈  ∩  𝐹  →  ¬  𝑦  ∈  ∩  𝐹 ) ) | 
						
							| 43 | 42 | pm2.01d | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) )  →  ¬  𝑦  ∈  ∩  𝐹 ) | 
						
							| 44 | 43 | eq0rdv | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) )  →  ∩  𝐹  =  ∅ ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 )  →  ∩  𝐹  =  ∅ ) ) | 
						
							| 46 | 16 45 | impbid | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∩  𝐹  =  ∅  ↔  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) ) ) | 
						
							| 47 |  | rabss | ⊢ ( { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  Fin }  ⊆  𝐹  ↔  ∀ 𝑥  ∈  𝒫  𝑋 ( ( 𝑋  ∖  𝑥 )  ∈  Fin  →  𝑥  ∈  𝐹 ) ) | 
						
							| 48 | 46 47 | bitr4di | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ∩  𝐹  =  ∅  ↔  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝑋  ∖  𝑥 )  ∈  Fin }  ⊆  𝐹 ) ) |