| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ufilss |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 2 |
1
|
ord |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ¬ 𝑆 ∈ 𝐹 → ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 3 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 4 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 5 |
|
fbncp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) |
| 6 |
5
|
ex |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑆 ∈ 𝐹 → ¬ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 7 |
6
|
con2d |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 8 |
3 4 7
|
3syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 10 |
2 9
|
impbid |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ¬ 𝑆 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |