Metamath Proof Explorer


Theorem ufilb

Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilb FUFilXSX¬SFXSF

Proof

Step Hyp Ref Expression
1 ufilss FUFilXSXSFXSF
2 1 ord FUFilXSX¬SFXSF
3 ufilfil FUFilXFFilX
4 filfbas FFilXFfBasX
5 fbncp FfBasXSF¬XSF
6 5 ex FfBasXSF¬XSF
7 6 con2d FfBasXXSF¬SF
8 3 4 7 3syl FUFilXXSF¬SF
9 8 adantr FUFilXSXXSF¬SF
10 2 9 impbid FUFilXSX¬SFXSF