| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
| 2 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 3 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 4 |
3
|
difeq1i |
⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ( { ∅ } ∖ { ∅ } ) |
| 5 |
|
difid |
⊢ ( { ∅ } ∖ { ∅ } ) = ∅ |
| 6 |
4 5
|
eqtri |
⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ∅ |
| 7 |
2 6
|
feq23i |
⊢ ( ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ↔ ∅ : ∅ ⟶ ∅ ) |
| 8 |
1 7
|
mpbir |
⊢ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) |
| 9 |
|
0ex |
⊢ ∅ ∈ V |
| 10 |
|
vtxval0 |
⊢ ( Vtx ‘ ∅ ) = ∅ |
| 11 |
10
|
eqcomi |
⊢ ∅ = ( Vtx ‘ ∅ ) |
| 12 |
|
iedgval0 |
⊢ ( iEdg ‘ ∅ ) = ∅ |
| 13 |
12
|
eqcomi |
⊢ ∅ = ( iEdg ‘ ∅ ) |
| 14 |
11 13
|
isuhgr |
⊢ ( ∅ ∈ V → ( ∅ ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ) ) |
| 15 |
9 14
|
ax-mp |
⊢ ( ∅ ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ∅ ∖ { ∅ } ) ) |
| 16 |
8 15
|
mpbir |
⊢ ∅ ∈ UHGraph |